
 MUSIC/SP User's Reference Guide

 Part 5 - Chapter 9 (UR_P5.PS)

 Chapter 9. System Subroutines

 Chapter 9. System Subroutines 459

 Chapter 9. System Subroutines
———————————————
 Overview

This chapter describes the MUSIC system subroutines. Many other subroutines are also available to the
MUSIC user such as the mathematical functions SQRT, and so forth.

First, a listing of the routines in functional groups will be presented. Next, an alphabetical arrangement of all
these subroutines with detailed usage descriptions of each is presented.

 Functional Summary of Subroutines

Scheduling Actions and Controlling Jobs

This group of subroutines cause a MUSIC activity to be scheduled after the current job ends.

NONCAN Make a program noncancelable.
CANCAN Remove the effect of a call to NONCAN.
NXTCMD Schedule a command to be run next using multi-tasking or program chaining.
NXTPGM Schedule a program to be run next using program chaining.
PARM Pick up the information from a /PARM control statement.
SAVREQ Schedule a /SV command next.
SIGNOF Schedule a /OFF next.
NSGNOF Removes the request to schedule a /OFF command next.
SYSMSG Suppress system information messages until after the scheduled activity is done.
EOJ Terminate the current job and sets a return code.
GETRET Get return code.

Time, Date and User Information

These routines can obtain the time and date in various formats. Information about the userid running the job
and the workstation type is also available. Routines are provided to give elapsed job time. A delay routine
can be used to re-activate a job after a given amount of time.

CMDRET Retrieves command strings.
CMDSTO Stores command strings.
CODON Determines if a userid is signed on to MUSIC.
DATCON Converts date data from one format to another.
DATCN2 Similar to DATCON with a more thorough analysis of the argument list.
DELAY Specify time delay before job is re-activated.
GETID Gets ownership id from a file name or data set name.
STATUS Returns the time of day, current date, service units used, etc.
TIMCON Converts time data from one format to another.
TIMDAT Gets time of day (by TSTIME) and date (by TSDATE).
TIMOFF Job time is displayed.
TIMON Reset time counter used in TIMOFF.
TSDATE Give current date.
TSTIME Give current time of day or execution time.
TSUSER Provide userid and workstation type.

460 MUSIC/SP User's Reference Guide

Dynamic Access

These routines allow you to read and write files from FORTRAN without having to pre-define the file names
on /FILE statements. The files are opened and closed dynamically.

OPNFIL Open a file.
CLSFIL Close a file.
SETINF Specify information for a new file.
FILMSG Get error description text.
PURGE Delete a file.
FRSTOR Frees main storage for use via an array.
GTSTOR Gets main storage for use via an array.
QFOPEN Opens a file and defines buffer area
QFCLOS Closes a file and releases buffer
QFREAD Reads next logical record
QFBKRD Reads previous logical record
QFRBA Sets RBA for next read
QFREW Rewinds the file

SYSIN Read Routines

These routines allow you to dynamically specify which file to read from the Save Library. They also allow
you to inspect where the SYSIN (unit 5) data is coming from and issue messages.

SYSINR Dynamically open a file for reading.
SYSINM Give message identifying file and line number.
SYSINE Inspect error return codes for sysin.
SYSINL Inspect SYSIN nesting stack.

Block Transfer

These routines allow reading and writing of large blocks to disk files, bypassing the logical blocking and
buffering operations. A large number of separate logical files are allowed.

GULPDF Defines file characteristics for GULP routines.
GULPRD Read in GULP mode.
GULPWR Write in GULP mode.

FORTRAN I/O

These routines are used in conjunction with FORTRAN I/O. They can re-read the last logical record, do I/O
to an in-core buffer, allow mixed free-and fixed-format I/O, and close a direct access file.

MCNCAT Replace VS Fortran's CNCAT# concatenation routine.
REREAD Re-read last logical record.
CORE DO I/O to buffer in main storage.
XGCON Allow mixed free and formatted I/O.
XGCOFF Turn off XGCON mode.
CLOSDA Close direct access buffers.
FRMTDA Erase the contents of a direct-access data set.
BIGBUF Allow record lengths of greater than 133 bytes to be used.

 Chapter 9. System Subroutines 461

ASCII Terminals

TPOPEN Turn off line folding at col 72 on a TTY terminal.
TPCLSE Turn on line folding at col 72 for TTY terminal.
NOCRLF Stop automatic return at the end of lines.
CRLF Re-instate automatic return at end of line.
NOTRIN Suppress translation of terminal input.
TRIN Cancel a call to NOTRIN and resume the normal translation of terminal input.

3270-Type Workstations

These routines allow you to control the display of the input area on 3270-type workstations when performing
a conversational read.

ADTOXY Convert a 3270 2-byte screen address to row and column.
KEEPIN Do not erase the contents of the input area.
CLRIN Erase the contents of the input area.
NOECHO Do not display the contents of the input area on the output area.
ECHOIN Display the contents of the input area on the output area.
NOSHOW Do not display the characters being entered to the input area.
SHOWIN Display the characters being entered to the input area.

Workstation Prompting

These routines allow you to remove and restore the conversational read prompt.

NPRMPT Remove prompting entirely
PROMPT Do prompting again

Workstation Features

These routines can be used to set TABS, turn on and off line folding, nonstop mode, and type element return
functions.

TABS Informs MUSIC of desired TAB settings.
NOPAUS Set nonstop mode. Used mainly for 1050 terminals.
PAUSE Turn off non-stop mode. Used mainly for 1050 terminals.
TEXTLC Lower case letters input during execution are to be preserved as such.
TEXTUC Lower case letters input during execution are to be converted to their upper case equivalents.

Controlling Output

STOPSK Stop /SKIP operation requested by the user.

Controlling Tape

BACKSP Do a backspace operation on a tape file defined by a ddname.

462 MUSIC/SP User's Reference Guide

Manipulating Bits

Routines that work on the 8 bits of a byte. Each bit of the byte has the two possible values of ON or OFF.

BITON Turn bit on.
BITOFF Turn bit off.
BITFLP Reverse a bit.
TBIT Test if bit is on or off.

Character Translation

CTRAN Translate each occurrence of one character to another.
FIXSCR Translates hex characters to blanks.
TOLC Translates a string of characters to lower case.
TOUC Translates a string of characters to upper case.
TRANSL Modify characters using a translate table.

Moving Bytes and Words

These routines get or move storage on a byte or word basis. One routine can set many bytes to zero.

BYTE Get first byte of arg.
FILL Fill storage with a specified character.
HWORD Get first 2 bytes of arg.
LMOVE Move bytes from one place to another.
LBMOVE Same as LMOVE but on any byte boundary.
MOVE Move words in storage.
ZERO Set storage to zeros.

Converting Character Strings

C2D Convert a numeric character string to a decimal value (double precision).
C2I Convert a numeric character string to an integer value.
C2R Convert numeric character string to a decimal value (single precision).
C2X Convert a character string to hexadecimal.
DECN Convert a numeric string to an integer value.
DECOUT Convert an integer value to a character string, similar to Fortran I format.
I2C Convert an integer value to a character string.
I2X Convert an integer to a hexadecimal string.
X2C Convert a hexadecimal string to characters.
X2I Convert a hexadecimal string to an integer value.
MA2E Convert from Ascii to EBCDIC (1-to-1 mapping for all 256 characters). Same calling
 sequence as A2E.
ME2A Convert from EBCDIC to Ascii (also 1-to-1). Same calling sequence as E2A.
TBAS64 Encode data using Base64 method (MIME standard).
FBAS64 Decode Base64 data.
B64TXT Processes Base64 data: decode, separate into records by CRLF, and convert from Ascii to
 EBCDIC. Record input and output is done by calling user-supplied subroutines. This
 routine could be used by MAIL to display MIME text.
UUENC Encode data using the UUENCODE method. Similar to Base64, but uses different character
 table and does not remember the exact original length.
UUDEC Decode UUENCODE'd data.

 Chapter 9. System Subroutines 463

Manipulating Strings

ABBREV Test whether a string is a true abbreviation for a keyword.
CENTER Center a string.
GETOP Get the parameters from a character string.
LJUST Left justify a string.
LN Gets the length of a character string.
NXWORD Get the next word from a string.
PROCOP Process an option item in the format abc(xyz).
RJUST Right justify a string.
RVRS Reverse the order of characters in a string.
SEP Separate out fields separated by 1 or more blanks/commas.
WORD Separate a string into words.

Character Searching

FNDALL Find all specified reference characters in a string.
FNDCHR Find the first reference character in a string.
LOCATE This routine finds the first occurrence of one string within another string.
VERALL Verify all characters of a string are within a set of reference characters and returns all
 mismatches.
VERIFY Verify all characters of a string are within a set of reference characters and returns the first
 mismatch.

Comparing Bytes and Words

Routines to compare numbers or character strings for equality (and so forth).

EQUAL Compare strings for equality.
EQUALB Compare byte strings for equality.
LCOMP Compare strings.
LBCOMP Compare byte strings for equality.

Logical Operations

Perform logical operations and shift bits within words.

LAND Logical AND.
LOR Logical OR.
LXOR Logical exclusive OR.
LCOMPL Logical complement.
LSHFTL Do left shift operation.
LSHFTR Do right shift operation.

Sorting

See "Sorting Routines" in Chapter 10. Utilities for larger disk sort operations.)

DSORT Generalized disk sort subroutine, see Chapter 10. Utilities.
SSORT Sort arrays in main storage.
SRTMUS Similar to DSORT, see Chapter 10. Utilities

464 MUSIC/SP User's Reference Guide

Generating Random Numbers

This routine, with its several function calls, allows for various types of random number generation.

RSTART Random number generation

PANEL Support

MODFLD Redefine the attributes of modifiable fields by field number of screens designed using
 PANEL.
MODOPT Modify panel options previously defined using the PANEL subsystem.
PANFLD Query information about PANEL fields.

Debugging

DEBUG Invokes the Debug Facility at various points in your program.

TCP/IP Sockets

CARGCALL Guarantees that arguments are passed correctly for C programming.

Index Text Searching (ITS)

ITSFID Initialization/dynamic call
ITSFIW Initialization/workarea call
ITSFOP Open a search set
ITSFSS Search string
ITSFOR Order result list
ITSFRE Retrieve results
ITSFCL Close search

Miscellaneous

LOCNAM Change an output file name to make it local to the current directory (if necessary).

 Chapter 9. System Subroutines 465

 Subroutines Listed Alphabetically

ABBREV

This subroutine tests whether a string is a true abbreviation for a keyword.

Calling Sequence: k=ABBREV(a,len,kw,minl,maxl)

Arguments:

a is a true abbreviation.

len is the length in bytes.

kw is the keyword.

minl is the minimum length of the abbreviation.

maxl is the maximum length of the abbreviation.

ABBREV returns k=1 if a (of length len bytes) is a true abbreviation for kw (minimum abbreviation length
minl, total length maxl), otherwise k=0. Should have 1 <= minl <= maxl <= 256.

 return k=1 if: len>0
 and len>=minl
 and len<=maxl
 and equal(a,kw,len)

See also: NXWORD, PROCOP, and GETOP.

ADTOXY

This subroutines converts a 3270 2-byte screen address to row and column numbers.

Calling Sequence: CALL ADTOXY(addr,width,row,column).

Arguments:

addr (input) 2-byte screen addr, either 12-bit coded form or 14-bit uncoded form.

width (input) screen width (e.g. 80 or 132).

row (output) row number (>=1).

column (output) column number (1 to width).

BACKSP

This routine preforms a backspace operation on a tape file defined by a ddname. It can be used by a COBOL
or PL/I program to add data to the end of an existing tape file. Refer to the discussion on /FILE for tape.

466 BACKSP - MUSIC/SP User's Reference Guide

Calling Sequence: CALL BACKSP('ddname ')

BIGBUF

(Fortran G1 only) This subroutine is used to increase the size of the maximum record length handled by
FORTRAN sequential I/Os. If this subroutine is not called, the maximum is 133 bytes.

To allow record lengths of more than 133, call BIGBUF and supply an array of length n bytes. The system
uses a work area buffer for all input/output except direct access. BIGBUF is normally called once at the
beginning of the job, before any input/output is done.

Calling Sequence: CALL BIGBUF(buffer,n)

Arguments:

buffer is the name of the array that is used as an I/O buffer. Since the array must start on a fullword
 boundary, it is convenient to use an array of type INTEGER*4 or REAL*4.

n is any number 133 or more indicating the record length. Regardless of the limit defined by
 BIGBUF, the maximum record length in a file may be subject to other limitations. For
 further details see Chapter 4. File System and I/O Interface of this guide.

Example:

 The following FORTRAN program writes three 400-byte records to a temporary file, then
 reads the records back and displays them. If BIGBUF were not called, this program would
 give the error message: IHN212I, END OF RECORD ON UNIT 1.

 /FILE 1 NAME(&&TEMP) NEW DELETE LRECL(400)
 INTEGER BUF(100),A(80)
 CALL BIGBUF(BUF,400)
 WRITE(1,10) (I,I=1,240)
 10 FORMAT(80I5)
 REWIND 1
 15 READ(1,10,END=20) A
 WRITE(6,*) A
 GO TO 15
 20 STOP
 END

BITFLP

This subroutine is identical to BITON except that the referenced bit is reversed. That is, a 0 is set to 1, and a
1 is set to 0. This routine is an INTEGER function and must be declared as such in your program.

Calling Sequence: n=BITFLP(a,k)

Arguments:

a location of the byte.

k is a number between 0 and 31 indicating the bit position.

 Chapter 9. System Subroutines - BITFLP 467

BITOFF

This subroutine is identical to BITON except that the referenced bit is set to 0 instead of 1. This routine is an
INTEGER function and must be declared as such in your program.

Calling Sequence: n=BITOFF(a,k)

Arguments:

a location of the byte.

k is a number between 0 and 31 indicating the bit position.

BITON

This FORTRAN INTEGER function is used in conjunction with TBIT, BITOFF, and BITFLP. It returns the
current value of bit k (k=0,1,2,...) of location a, and sets that bit to 1. This routine is an INTEGER function
and must be declared as such in your program.

Calling Sequence: n=BITON(a,k)

Arguments:

a location of the byte.

k is a number between 0 and 31 indicating the bit position. For example, if k is 24, the value of the
 first bit of the fourth byte of a is returned and that bit is set to 1. The first bit position is referred to
 as bit 0. If k is negative, a value of zero is returned and the bit is not changed.

BYTE

This subroutine is a FORTRAN INTEGER function which returns the value (0 to 255) of the first byte of the
argument x. This routine is an INTEGER function and must be declared as such in your program.

Calling Sequence: n=BYTE(x)

B64TXT

This routine processes BASE64 data, as in mime mail data, decodes it, separates it into records, and converts
it from ASCII to EBCDIC. Records are assumed to be separated by ASCII CRLF (X'0D0A'). Input records
(max 80 bytes each) are read by calling user-supplied routine B64TRD. Output records are written by call-
ing user-supplied routine B64TWR. (this routine is reentrant.)

In the input BASE64 data, blanks and line breaks are ignored. Also, control characters (less than x'40') are
also ignored. An input quartet (group of 4 encoded bytes) may be split by these characters or line breaks. If
invalid characters are found in the BASE64 data, the corresponding output triples are replaced by "???".

Routines used: FBAS64 - decode base64 data; MA2E translate from 8-bit ascii to ebcdic.

468 B64TXT - MUSIC/SP User's Reference Guide

Calling Sequence: CALL B64TXT(work,wrklen,mxolen,argrd,argwr,numout,retcod)

Arguments:

work a work area, on a doubleword boundary.

wrklen (input) length of the work area. Should be at least 400 + mxolen.

mxolen (input) maximum length of output records. when looking for crlf's to separate the records,
 records longer than this are truncated. if mxolen<1, vaule 1 is used.

argrd (input) this argument is passed to B64TRD routine.

argwr (input) this argument is passed to B64TWR routine.

numout (output) number of output records.

retcod (output) return code:
 0 normal, no errors.
 1 work area is too small.
 2 terminated by error from b64trd routine.
 3 terminated by error from b64twr routine.
 4 1 or more bad characters were found in the base64
 data. the output text may be incorrect.
 5 1 or more output records were truncated.
 6 both retcod conditions 4 and 5.

The following is the calling sequences for user-supplied record read/write routines:

Calling Sequence: CALL B64TRD(argrd,rec,maxlen,len,k)

Arguments:

argrd same as arg passed to B64TXT.
rec buffer to receive input record.
maxlen max length of input record (= buffer size). currently maxlen is 80.
len (output) actual length of record (0 to maxlen). B64TXT skips 0-length input records.
k (output) 0=normal, 1=eof, 2=error (B64TXT stops). Note: if an EOF quartet (one with the
 special pad character "=") is found in the input, B64TXT stops before eof is received from
 b64trd.

Calling Sequence: CALL B64TWR(argwr,rec,len,k)

Arguments:

argwr same as arg passed to b64txt.
rec record to be put out.
len length of the record (0 or more).
k (output) 0=normal, 1=error (b64txt stops).

CANCAN

A call to this routine removes the effect of a previous call to the NONCAN routine. It makes the program
cancelable by the /CANCEL command. A call to CANCAN does not take effect until after the next

 Chapter 9. System Subroutines - CANCAN 469

conversational read or call to CLSOUT.

Calling Sequence: CALL CANCAN

CARGCALL

This subroutine is intended for C programmers calling TCP/IP socket routines. When called before the first
socket routine, it guarantees that the arguments are passed in the manner C requires.

Calling Sequence: CALL CARGCALL();

CENTER

This routine centers a substring, within a 1-to 256-character string, defined as the first non blank character
from the left and the last non blank character. The substring is then placed at the center of the string.

Calling Sequence: CALL CENTER(string,strlen,pad)

Arguments:

string is a 1-to 256-character string to be centered.

strlen is the length of the string, an integer in the range of 1-256. When strlen=0 no action is taken
 by CENTER.

pad all leading and trailing blanks in the string are converted to the pad character, after the text
 has been centered.

Example:

 Given that:

 STRING --> 'bb12345bbbbb'
 STRLEN --> 12
 PAD --> 'b'

 CALL CENTER(STRING,STRLEN,PAD)

 Returns:

 STRING --> 'bbb12345bbbb'
 STRLEN --> 8

CLOSDA

(Fortran G1 only) A call to this subroutine closes a direct access file specified by unit. This close operation
causes the contents of buffers to be written out on disk. Also, a direct access read following a call to
CLOSDA actually reads from disk, rather than from a buffer in main storage. This is important for applica-
tions where several programs share a direct-access file. You may still use the file for further direct-access
operations. Note that direct-access data sets may not be closed by the system unless the job terminates

470 CLOSDA - MUSIC/SP User's Reference Guide

normally.

Calling Sequence: CALL CLOSDA(unit)

CLRIN

A call to this subroutine cancels the effect of a previous call to the KEEPIN subroutine.

Calling Sequence: CALL CLRIN

CLSFIL

Dynamically close a file. Refer to the section "Dynamic Access to Files" for a description of this routine.

CMDRET

This routine retrieves command strings from a circular buffer of previously stored commands. This works in
the same way as the store/retrieve (F12) when in *Go. The CMDSTO is used to store the commands strings
in the buffer.

Calling Sequence: CALL CMDRET(cmd,cmdlen,maxlen,cmdbuf)

Arguments:

cmd a 1-126 character string returned from the command buffer

cmdlen the length of the string CMD is returned.

maxlen the maximum length of the string CMD (1-126)

cmdbuf a 256 character string to be used as the command buffer.

Notes:

1. Only the first 128 bytes of CMDBUF are used, the other 128 bytes are used as a temporary buffer.

2. Successive entries of the same CMD string will not be stored.

3. This routine is re-entrant.

CMDSTO

This routine stores a command string into a circular buffer for later retrieval. This works in the same way as
the store/retrieve (F12) when in *Go. The CMDRET is used to retrieve from the commands from the buffer,
in the order they were entered.

Calling Sequence: CALL CMDSTO(cmd,cmdlen,maxlen,cmdbuf)

 Chapter 9. System Subroutines - CMDSTO 471

Arguments:

cmd a 1-126 character string to be placed in the command buffer.

cmdlen the length of the string CMD (1-126).

maxlen the maximum length of the string CMD (1-126).

cmdbuf a 256 character string to be used as the command buffer.

Notes:

1. Only the first 128 bytes of the CMDBUF are used, the other 128 bytes are used as a temporary buffer.

2. Successive entries of the same CMD string will not be stored.

3. This routine is re-entrant.

CODON

This routine reads the terminal control blocks (TCB) and determines if the code passed is signed on to
MUSIC and returns the TCB number and the code's terminal mode.

Calling Sequence: CALL CODON(code,tcbno,mode,irc)

Arguments:

code seven-character user id

tcbno return terminal (TCB number) 2 character integer

mode return terminal mode
 0= not active
 1= *go
 2= break
 3= conversational
 4= spooled input
 5= running a job
 6= FSIO
 7= command execution from a prog

irc Set to 0 if code is not active, set to 1 if code is active.

CORE

This subroutine for FORTRAN allows reading and writing from a buffer in memory, without physical I/O.

Executing this call statement causes the next formatted or list-directed READ or WRITE to transmit from or
to the data area in core beginning at location buffer, and extending length bytes.

Calling Sequence: CALL CORE(buffer,length)

472 CORE - MUSIC/SP User's Reference Guide

Arguments:

buffer is an array name.

length is the length of the array in bytes. Length must be at least 4 and up to 32000.

Notes:

1. The call to CORE must be executed before each formatted or list-directed READ or WRITE (that is to
 use an incore buffer) is executed. The unit number in the READ or WRITE statement is ignored.
 CORE must not be called twice without an intervening formatted or list-directed READ or WRITE
 statement. The I/O request must not attempt to read or write more than one logical record.

2. Declaring the buffer to be of type LOGICAL *1 has the advantage that each character in the buffer can
 be accessed by subscripting. The buffer is filled with blanks before any data is written into it.

3. Unformatted READ or WRITE statements, and BACKSPACE or REWIND statements must not be
 executed between the CALL CORE and the READ or WRITE statement.

4. If REREAD and CORE are used within the same program, REREAD is temporarily disabled when
 CORE is called.

 For example:

 LOGICAL *1 BUFF(80)
 5 CALL REREAD
 10 READ(5,100)X
 20 CALL CORE(BUFF,80)
 30 WRITE(N,102)X
 40 CALL CORE(BUFF,80)
 50 READ(99,103)Y
 60 READ(99,104)Z

 x is written into the incore buffer BUFF by statement 30. Statement 50 reads from the incore buffer into
 y. Statement 60 rereads the record read by statement 10.

Example:

 *Go
 list sample
 *In progress
 /LOAD VSFORT
 DIMENSION A(5)
 LOGICAL *1 BUFF(80),NBUFF(80)
 LOGICAL EQUAL,B1
 DO 1 I=1,5
 1 A(I)=10**I
 WRITE(6,2)A
 2 FORMAT('0',5F12.0)
 CALL CORE(BUFF,80)
 WRITE(N,8)A
 8 FORMAT(5F12.0)
 C NOW COMPRESS MULTIPLE BLANKS IN
 C BUFF TO ONE BLANK, BY COPYING TO NBUFF
 NEW=1
 B1=.FALSE.

 Chapter 9. System Subroutines - CORE 473

 DO 3 K=1,80
 IF(EQUAL(BUFF(K),' ',1)) GO TO 4
 B1=.FALSE.
 5 NBUFF(NEW)=BUFF(K)
 NEW=NEW+1
 GO TO 3
 4 IF (B1) GO TO 3
 B1=.TRUE.
 GO TO 5
 3 CONTINUE
 NEW=NEW-1
 WRITE(6,7)(NBUFF(I),I=1,NEW)
 7 FORMAT('0',80A1)
 CALL EXIT
 END
 *End
 *Go
 sample
 *In progress
 MAIN = 0003DC
 003AA8 BYTES USED
 EXECUTION BEGINS

 10. 100. 1000. 10000. 100000.

 10. 100. 1000. 10000. 100000.
 *End
 *Go

CRLF

A call to this subroutine cancels the effect of a call to the NOCRLF subroutine. This subroutine is for ASCII
terminals only.

Calling Sequence: CALL CRLF

CTRAN

This routine locates and translates every occurrence of a specified character to another character. The
number of characters changed is returned.

Calling Sequence: CALL CTRAN(string,strlen,oldchr,newchr,kount)

Arguments:

string is character string to be processed of length strlen.

strlen is an integer specifying the length of the string.

oldchr is the target character in string to be converted to the character specified by newchr.

newchr is the new character for which each occurrence of oldchr will be swapped in string.

474 CTRAN - MUSIC/SP User's Reference Guide

kount is an integer returned that reports the number of characters changed as specified.

Example:

 Given that:

 STRING --> 'bb12345b'
 STRLEN --> 8
 OLDCHR --> 'b'
 NEWCHR --> '*'

 CALL CTRAN(STRING,STRLEN,OLDCHR,NEWCHR,KOUNT)

 Returns:

 STRING --> '**12345*'
 STRLEN --> 8
 OLDCHR --> 'b'
 NEWCHR --> '*'
 KOUNT --> 3

C2D

This subroutine converts a numeric character string to its double precision decimal value. Conversion from
character number to a decimal is done by separating the whole and the fractional part. These are then
converted to their integer values. j and k are first converted to long-format floating point. Then x is
computed from j.k*10**n. where j is the whole, k is the fractional part and n is the exponent.

Calling Sequence: CALL C2D(string,strlen,x,irc,badchr,iexp)

string is a 1-to 256-character string on which a substring of character numbers is to be converted to
 short or long format floating point number, in other words, a real number.

strlen is the length of the string, an integer in the range of 1-256.

x is the real floating point number returned.
 x must be declared as REAL*8 (double precision).

irc is the return code describing the conversion.
 irc=-1 The string was blank.
 irc=0 Conversion was successful.
 irc=1 An illegal character was found in the string.
 irc=2 Exponent overflow (IEXP>75).
 irc=3 Exponent underflow (IEXP<-75).

 Note: x is set to zero when irc is not equal to 0.

badchr A one byte variable where the bad character (non integer character) is returned when irc=1.

iexp An integer variable where the exponent of the number being converted is returned when
 irc=2 or irc=3.

 Chapter 9. System Subroutines - C2D 475

C2I

This routine converts the substring, within a 1-to 256-character string, defined as the first non blank character
from the left and the last non blank character, to an integer.

Calling Sequence: CALL C2I(string,strlen,i,irc,badchr)

Arguments:

string is a 1-to 256-character string on which a substring of character numbers is to be converted to
 integer.

strlen is the length of the string, an integer in the range of 1 to 256.

i is the integer returned.

irc is the return code describing the conversion.
 irc=-1 the string was blank.
 irc=0 conversion was successful.
 irc=1 an illegal character was found in the string.
 irc=2 conversion not possible, number was to large.

 Note: i is set to zero when irc is not equal to 0.

badchr a one byte variable where the bad character (non-integer character) is returned when irc=1.

Example:

 Given that:

 STRING --> 'bb12345b'
 STRLEN --> 8

 CALL C2I(STRING,STRLEN,I,IRC,BADCHR)

 Returns:

 STRING --> 'bb12345b'
 STRLEN --> 8
 I --> 12345
 IRC --> 0
 BADCHR --> 'b'

C2R

This subroutine converts a numeric character string to its single precision decimal value. Conversion from
character number to a decimal is done by separating the whole and the fractional part. These are then
converted to their integer values. j and j are first converted to long-format floating point. Then x is
computed from j.k*10**n. where j is the whole, k is the fractional part and n is the exponent.

Calling Sequence: CALL C2R(string,strlen,x,irc,badchr,iexp)

476 C2R - MUSIC/SP User's Reference Guide

Arguments:

string is a 1 to 256 character string on which a substring of character numbers is to be converted to
 short or long format floating point number. i.e. a real number.

strlen is the length of the string, an integer in the range of 1-256.

x is the real floating point number returned.
 x must be declared as REAL*4 (single precision).

irc is the return code describing the conversion.
 irc=-1 The string was blank.
 irc=0 Conversion was successful. ..text
 irc=1 An illegal character was found in the string.
 irc=2 Exponent overflow (IEXP>75)
 irc=3 Exponent underflow (IEXP<-75)

 Note: that x is set to zero when irc is not equal to 0.

badchr A one byte variable where the bad character (non-integer character),is returned when irc=1.

iexp An integer variable where the exponent of the number being converted,is returned when
 irc=2 or irc=3.

C2X

This subroutine converts (unpacks) a EBCDIC character string to its hexadecimal character representation.

Calling Sequence: CALL C2X(string,strlen,hexstr)

Arguments:

string is a string of length strlen to be converted to its hexadecimal representation.

strlen is the length of the string, in the range of 1 to 256. When strlen =0 no conversion takes
 place.

hexstr is the output string where EBCDIC hexdigits representing the original string are returned.
 The character string must be at least twice the length of string.

Example:

 Given that:

 STRING --> 'bb12345b'
 STRLEN --> 8

 CALL C2X(STRING,STRLEN,HEXSTR)

 Returns:

 STRING --> 'bb12345b'
 STRLEN --> 8
 HEXSTR --> '4040F1F2F3F4F540'

 Chapter 9. System Subroutines - C2X 477

DATCN2

This subroutine is a version of DATCON that does a more thorough analysis of the argument list passed.
When an error occurs it passes an error number to the calling program. It does not stop the job, nor does it
print error messages. Except for the insertion of the irc variable in the calling sequence, DATCN2 parame-
ters are identical to DATCON.

Enhanced error checking includes:

- Checks if too many or too few parameters are passed.

- Except for type 10, all input dates are checked for valid month, that the corresponding number of days
 in that month is correct, and that the number of days is not greater than a full year. the leap year is taken
 into account on all verifications.

- For types 4 and 6 the integer year can be expressed as 1989 or 89. "1900" is assumed.

- For type 10, a check is made that it is a packed decimal value only. Since this data was generated by
 datcn2, datcon, or tsdate, further checking is not required.

Calling Sequence: CALL DATCN2(irc,m,arg1,{arg2,arg3},n,arg1,{arg2,arg3})

Arguments:

irc is the one of the following return codes:

 irc=0 no error detected conversion successful
 irc=1 input data conversion type is invalid
 irc=2 output data conversion type is invalid
 irc=3 input data (date) is invalid
 irc=4 wrong number of arguments detected.

See DATCON for descriptions of the other arguments.

DATCON

This subroutine is used to convert date data from one format to another. DATCON checks incoming dates
for errors and stops the job and writes an error message. In addition, no attempt is made to convert the bogus
dates; blanks are returned in character fields and zero values in numeric fields.

Calling Sequence: CALL DATCON(m,arg1,{arg2,arg3},n,arg1,{arg2,arg3})

Arguments:

m is one of the numbers listed below (except 5) representing the input date format.

n is one of the numbers listed below representing the output date format.

 1 16 byte date, for example: 'FRI SEP 06, 1989'
 2 is an 8 byte date in the form MM/DD/YY, for example: 09/06/89.
 3 is an 8 byte date, for example: 06SEP89
 4 arg1 is the integer year (1989); arg2 is the integer date of the year (249).
 5 is the integer day of the week (Sunday is 1, Monday is 2).

478 DATCON - MUSIC/SP User's Reference Guide

 6 arg1 is the integer month (5); arg2 is the integer day (26); arg3 is the integer year (1989).
 7 is an 8 byte date in the form DD/MM/YY, for example: 26/01/89.
 8 is an 8 byte date in the form YYMMDD, for example: 890126.
 9 is an 8 byte date in the form DDMMYY, for example: 260189.
 10 is a 4 byte date in packed decimal 0077DDDZ format, for example: 0089360C.

DEBUG

Calls to subroutine DEBUG ($SUB:DEBUG.OBJ) can be inserted at various points in a program, to invoke
the Debug Facility when execution reaches those points. If Debug is not active, the calls are ignored. The
usage in a VS Fortran program is "CALL DEBUG" (no arguments). /INCLUDE $SUB:DEBUG.OBJ must
be inserted in the job.

Specify the DEBUG option on /JOB (or on the member name statement after /LOAD XMON). At the begin-
ning of the program, you are presented with the Debug screen. Press F2 to run the program. When a CALL
DEBUG is reached in the program, the Debug Facility is invoked and you can do debug operations from the
Debug screen. Press F2 to resume execution.

This technique is useful when it is not feasible to trace the entire program or set Debug break points. Note
that VS Fortran programs are difficult to trace, because Fortran run-time library modules such as
IFYVRENC are normally in the Link Pack Area, which is read-only storage.

DECN

This subroutine converts a numeric character string to an integer value. The string is of length from 1 to 9.
A valid string consists of decimal digits, without any leading blanks.

Calling Sequence: CALL DECN(string,len,ivalue,irc)

Arguments:

string is a numeric character string specified by the caller.

len is the length of the string from 1 to 9.

ivalue is the output integer value.

irc is one of the following return codes:
 irc=0 successful conversion.
 irc=1 input string is incorrect.

DECOUT

This routine converts an integer value to a printable character string, in the same way as done by Fortran I
format. The output is right justified in the area, preceded by blanks, and a minus sign ("-") is supplied if the
number is negative. If the area is too short, it is filled with asterisks ("*"). This routine is re-entrant (it does
not modify itself).

Calling Sequence: CALL DECOUT(string,len,ivalue)

 Chapter 9. System Subroutines - DECOUT 479

Arguments:

string is the output character string.

len is the length of string set by the caller. The range is from 0 to 256.

ivalue is the input number.

DELAY

A call to this routine suspends the execution of the job for at least n seconds. Use the subroutine CLSOUT
before a long delay if you wish to force all generated output to be printed before the delay.

Calling Sequence: CALL DELAY(n)

Arguments:

n is the number of seconds for the delay period. You should use a delay period of at least 1 second.

DSORT

DSORT is a generalized disk sort subroutine callable from many of MUSIC's high-level languages such as
FORTRAN. For information see "Sorting Routines" in Chapter 10. Utilities.

ECHOIN

A call to this subroutine cancels the effect of a previous call to the NOECHO subroutine.

Calling Sequence: CALL ECHOIN

EOJ

This routine terminates the current job and sets the return code. (See also the GETRET subroutine.)

Calling Sequence: CALL EOJ(irc)

Arguments:

irc is an integer number supplied by the caller. It is put into register 15 when the job ends. A value of 0
 usually means normal end, while a nonzero value usually indicates an error condition.

EQUAL

This subroutine is a FORTRAN LOGICAL function used for comparing bytes. If the compared bytes are
identical, EQUAL is set to TRUE. If they are not identical, EQUAL is set to FALSE. This function must be
declared as LOGICAL in your program. (See also EQUALB.)

480 EQUAL - MUSIC/SP User's Reference Guide

Calling Sequence: v=EQUAL(a,b,n)

Arguments:

a is one location of bytes.

b is another location of bytes.

n is the number of bytes to compare. If n is less than 1, EQUAL is set to TRUE.

Example:

 LOGICAL EQUAL
 REAL *8 ALPHA,BETA
 :
 IF(EQUAL(ALPHA,BETA,6)) GO TO 10

EQUALB

This is a FORTRAN LOGICAL function used for comparing bytes. If the compared bytes are identical,
EQUALB is set to TRUE. If they are not identical, EQUALB is set to FALSE. This function must be
declared as LOGICAL in your program.

Calling Sequence: v=EQUALB(a,ka,b,kb,n)

Arguments:

a is one location of bytes.

ka indicates which byte to start with at location a. (The first byte is referred to as byte 1, not 0.)

b is another location of bytes.

kb indicates which byte to start with at location b. (The first byte is referred to as byte 1, not 0.)

n is the number of bytes to compare. If n is less than 1, EQUALB is set to TRUE.

Example:

 LOGICAL EQUALB
 REAL *8 ALPHA,BETA
 :
 IF(EQUALB(ALPHA,2,BETA,4,2)) GO TO 10

FBAS64

This subroutine decodes BASE64 data. This is the "base 64" encoding scheme used for e-mail mime, as
defined in RFC 1521. Base 64 encodes any 8-bit text to printable characters, producing 4 output characters
for each 3 input bytes. See the translate table in this routine for the 64 printable characters used. An addi-
tional character "=" is used for padding at the end of the encoded text if the original length is not a multiple
of 3. See TBAS64 routine for additional notes on the pad character and for examples of encoding. (This
routine is re-entrant.)

 Chapter 9. System Subroutines - FBAS64 481

This routine decodes the base 64 data, back to the original data. See also: TBAS64 - encode to base 64; and
UUDEC - uudecode-style decode.

Calling Sequence: CALL FBAS64(intxt,inlen,outtxt,outlen,retcod,displ)

Arguments:

intxt input data (encoded as base 64). It is assumed to start on a quartet (group of 4 bytes in the
 encoded text) boundary. Note: intxt is destroyed by this routine (tranlated in place), so the
 caller should pass a copy of the original data, if it is to be used again. intxt is destroyed only
 up to (not including) the first blank or pad character ("=") or invalid character or to the end
 of the last full input quartet.

inlen length of input data. If 0 or less, this routine sets outlen=0, retcod=0, and displ=0 and no
 other action is taken.

outtxt area to receive output (decoded) data. It must be large enough to hold the output data.
 Maximum possible output is ((inlen+1)/4)*3 bytes, where / is integer divide i.e. discard the
 remainder.

outlen this argument sets outlen to the length of the output data. This is usually a multiple of 3, but
 may be otherwise if the pad character ("=") is found in the input, indicating end of data.
 outlen is always the number of bytes stored into outtxt.

retcod,displ the routine sets these integer arguments to indicate various cases, errors, and ending condi-
 tions. retcod is a return code and displ is a displacement within intxt, usually indicating how
 many input characters have been processed. Scanning stops when a blank is found, or after
 an EOF quartet (with "=" pad char) is found, or an invalid character is found; this we call the
 "scan end".
 1. if the scan ends immediately follows a quartet, and the last quartet is not an EOF quar-
 tet, retcod=0 and displ=displacement to scan end i.e. 4*(number of quartets processed).
 outlen=3*(number of quartets processed).
 2. if scan ends immediately follows an eof quartet, displ is set as in case (1), and retcod=-1
 (if quartet is of the form "xxx=") or -2 (if "xx=="). an exception is that if the second
 "=" is not actually present in "xx==", displ is to after the first "=", i.e. 4*(no. of quar-
 tets) - 1. outlen=exact length of original text.
 3. if scan end is within a quartet (other than the exception in case (2)), retcod=number of
 of chars in last quartet before the scan end i.e. 1 to 3, and displ=displacement to end of
 the last complete quartet. outlen=3*(number of complete quartets processed). only the
 first displ bytes of intxt are destroyed; the partial quartet at the end is intact, and can be
 concatenated with later data and passed to a subsequent call to this routine.
 4. if an invalid character is found, retcod=4 and displ=displacement to the bad character.
 any preceding complete quartets are processed, and outlen=3*(the number of them).

Examples:

In these examples, x and y in outtxt are not the actual output characters, but indicate the form of the output.

 intxt='abcdefgh',inlen=8: outtxt='xxxyyy',outlen=6,
 retcod=0,displ=8

 intxt='abcd efgh',inlen=9: outtxt='xxx',outlen=3,
 retcod=0,displ=4

 intxt=' ',inlen=0: outtxt='',outlen=0,retcod=0,displ=0

482 FBAS64 - MUSIC/SP User's Reference Guide

 intxt='abcdefg=',inlen=8: outtxt='xxxyy',outlen=5,
 retcod=-1,displ=8

 intxt='abcdef==',inlen=8: outtxt='xxxy',outlen=4,
 retcod=-2,displ=8

 intxt='abcdef=',inlen=7: outtxt='xxxy',outlen=4,
 retcod=-2,displ=7 (this is the exception in case (2).)
 (same result for intxt='abcdef= ',inlen=8)

 intxt='abcde',inlen=5: outtxt='xxx',outlen=3,retcod=1,displ=4

 intxt='abcdefg',inlen=7: outtxt='xxx',outlen=3,
 retcod=3,displ=4

 intxt='abcdef*h',inlen=8: outtxt='xxx',outlen=3,
 retcod=4,displ=6

 intxt='abcde===',inlen=8: outtxt='xxx',outlen=3,
 retcod=4,displ=5

 intxt='abcdef=*' or 'abcdef=h',inlen=8: outtxt='xxx',outlen=3,
 retcod=4,displ=6 (the "=" is the bad char because it is
 not followed by another "=")

Notes:

1. intxt argument is modified by this routine. See description of intxt above.

2. Other 3-to-4 encoding schemes may use a different translate table and pad character, and may handle
 lengths which are not a multiple of 3 differently.

3. This routine assumes the base 64 encoded text contains EBCDIC (not ASCII) printable characters. If
 the input is ASCII, the caller must convert the input to EBCDIC before calling this routine.

FILL

This routine sets each byte of an area to a specified character.

Calling Sequence: CALL FILL(area,len,char)

Arguments:

area is the name of the storage area.

len is the length in bytes of the storage area. If the len is 0 or negative, no bytes are changed.

char is the character to use to fill in the area.

Example:

 CALL FILL(RECORD,80,' ')

 Chapter 9. System Subroutines - FILL 483

FILMSG

Get descriptive error text corresponding to a file error condition. Refer to the section "Dynamic Access to
Files" for a description of this routine.

FIXSCR

This subroutine translates the hex characters x'00' to x'3f' to x'40 (blank). Under certain conditions the hex
characters between 00 x'00' and x'3f' combine with printable characters to accidentally produce 3270 data
stream orders. These will disrupt the screen format when FSIO requests or panel are used. FIXSCR
prevents these characters from damaging the screen format.

Calling Sequence: CALL FIXSCR(a,len)

Arguments:

a is the data to be translated.

len is the number of bytes to be translated (0 or more). length may exceed 256. no action if
 length is 0 or less.

FNDALL

This routine finds all the characters of a string that are one of the group of characters specified in reference
string. All reference characters located will have their relative position in the string returned, as well as the
number found.

Calling Sequence: CALL FNDALL(string,strlen,refstr,reflen,pos,numpos)

Arguments:

string is a character string of length strlen, that is to be verified.

strlen is the length of the string, in the range of 1 to 256.

refstr is the group of character(s) that constitute the set of characters that are to be found in string.
 This character string can be called the reference string and the characters reference charac-
 ters.

reflen is the length of the refstr, in the range 1 to 256.

pos is an integer array where the relative character positions of matched refstr characters are
 returned. pos should be dimensioned to the byte length of string, that is pos(strlen). If a
 character is detected in string, and is one of the reference characters, its relative position is
 returned in pos(i).

numpos is an integer where the number of relative character positions of matched refstr characters
 are returned.

484 FNDALL - MUSIC/SP User's Reference Guide

Example:

 Given that:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789'
 REFLEN --> 10

 CALL FNDALL(STRING,STRLEN,REFSTR,REFLEN,POS,NUMPOS)

 Returns:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789'
 REFLEN --> 10
 POS --> 3, 4, 6, 7, 0, 0, 0, 0
 NUMPOS --> 4

FNDCHR

This routine finds the first occurrence of any of the characters specified by a reference character string in
string. If a reference character is located, its relative position in the string is returned.

Calling Sequence: CALL FNDCHR (string,strlen,refstr,reflen,pos)

Arguments:

string is a character string of length strlen, that is to be scanned.

strlen is the length of the string, in the range of 1 to 256.

refstr is the group of character(s) that constitute the range of characters, that is to be searched for,
 in string. This character string can be called the reference string and the characters refer-
 ence characters.

reflen is the length of the refstr, in the range of 1 to 256.

pos is an integer returned that is set to 0 if none of the characters of string are also in the refer-
 ence string, refstr. If a character is detected in string, that is one of the reference characters,
 its relative position is returned in pos.

Example:

 Given that:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789b'
 REFLEN --> 11

 CALL FNDCHR(STRING,STRLEN,REFSTR,REFLEN,POS)

 Chapter 9. System Subroutines - FNDCHR 485

 Returns:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789b'
 REFLEN --> 11
 POS --> 3

FRMTDA

(Fortran G1 only) A call to this subroutine writes blank records throughout the direct access file defined on
MUSIC I/O unit number n. It can be used to erase all previous contents of the file.

Calling Sequence: CALL FRMTDA(n)

FRSTOR

This subroutine frees main storage for use via an array in an os-mode program (normally FORTRAN).
FRSTOR does a FREEMAIN to free a specified amount of storage starting at a specified offset from a given
array. See also GTSTOR.

Calling Sequence: CALL FRSTOR(amt,a,offset,retcod)

Arguments:

amt number of bytes to be freed. This number is always rounded up to a multiple of 8. amt<=0
 is a no-operation. amt is rounded up to a multiple of 8 by freemain.

a an array relative to which the storage area is referenced.

offset distance in bytes from the array to the storage area. The allocated area is always on a
 doubleword boundary. The area must be on a doubleword boundary.

retcod return code:
 0 successful.
 1 requested storage not available.
 2 invalid request or argument value (e.g. area to be freed is not on doubleword bound-
 ary).
 3 not OS mode.

Notes:

1. An attempt to free storage that you did not get, or that has already been freed, can result in job termina-
 tion by the GETMAIN/FREEMAIN processor in OSTRAP.

2. neither get nor free clears storage. The caller should do this (by calling the ZERO subroutine) if
 desired.

3. If free storage is fragmented, a request for maximum available storage returns the largest contiguous
 free area, which may be much less than the total free storage.

486 FRSTOR - MUSIC/SP User's Reference Guide

GETID

This routine gets the ownership id from a file name or a data set name.

Calling Sequence: CALL GETID(type,name,lname,idout,pos)

Arguments:

type ID type:
 1 name is a file name, and end of id is indicated by a colon (:), as in userid:name_proper
 2 name is a UDS data set name, and end of ID is indicated by a period (.), as in
 USERID.ABC.DEF. also, if the DSNAME does not contain a period, and is length 4 or
 more, the userid is assumed to be the first 4 characters. Any other value for type sets
 IDOUT=' ',POS=1.

name (input) the name to be processed.

lname (input) max length of the name. The name is ended by a blank or after lname characters,
 whichever comes first.

idout (output) 16-char userid from the name, padded with trailing blanks if necessary, or blanks if
 the name does not start with a 1 to 16 character userid.

pos (output) integer position of the first character of the name proper, after the userid. Value 1
 means no valid userid was present. Value n means the name proper starts at the n'th charac-
 ter of the name (counting from 1). n>1 means a valid userid was found.

GETOP

This subroutine gets the parameters from a character string. It is used by commands /LIST, /SAVE,
/PURGE, /INPUT, etc. and by some utility programs.

Parameters in the string are separated by one or more blanks or commas, and may be preceded by leading
blanks (but not leading commas - leading commas are considered to be part of the first parameter). Option-
ally, a command keyword at the beginning of the string may be skipped.

Calling Sequence: CALL GETOP(ctl,prmfld,prmlen,optbl,maxop,kwtbl,&err)

Arguments:

ctl is an integer containing option bits in the 4th byte:
 x'01' the input string (prmfld) starts with a command keyword which should be skipped. This is
 done by searching for the first blank and starting the parameter scan after that blank. If no
 blank is found, there are considered to be no parameters.

 (other bits reserved)

prmfld is the input character string containing the parameters. It may have leading and trailing blanks (after
 the command keyword has been skipped, if x'01' option in ctl).

prmlen is the length (0 or more) of the character string.

optbl is the table to hold the parameter information. The first word will be set to the number of parameters

 Chapter 9. System Subroutines - GETOP 487

 found (0 or more). The rest of the table consists of entries, each 3 words long.

 1st word of entry: address of the parameter in the character string.

 2nd word of entry: length of the parameter.

 3rd word of entry: if the parameter is 1 to 9 decimal digits, this is the numeric value (0 or more).
 Otherwise the value is negative. The first byte is x'80', or x'80'+n if the parameter matches the
 keyword with id n in the keyword table (kwtbl). Note: if a keyword in kwtbl is all decimal digits,
 The 3rd info word does not have the numeric value but starts with x'80'+n.

maxop is the maximum number of parameters that optbl can hold. the total size of the table is 1+3*maxop
 words.

kwtbl is the table of special keywords which may occur as parameters. Each is given a non-zero id number
 n, which is returned in the optbl as described above. Different keywords may have the same id
 number. Each entry is of variable length:
 1st byte: length of keyword, or 0 meaning end of table.
 2nd byte: length of minimum abbreviation.
 3rd byte: the id number n.
 remaining bytes of entry: the keyword.

&err is the alternate return is taken if there are more than maxop parameters. The first maxop parameters
 are still put into the table, and the first word is set to maxop. For assembler callers, output r15=0
 means no error, r15=4 means too many parameters.

GETRET

This routine returns the return code set by the previous job. This also includes jobs done via the NXTCMD
subroutine.

Calling Sequence: CALL GETRET(irc)

Arguments:

irc is an integer number representing the return code set by the previous job.

GTSTOR

This subroutine gets main storage for use via an array in an OS-mode program (normally FORTRAN).
GTSTOR does a GETMAIN to get a specified amount (or the max amount available) of main storage, and
passes back an offset "T", which is the distance in bytes from the start of a given array "A" to the start of the
allocated storage. A(T+1) then references the first element of the storage. The array is normally declared as
size 1 in the calling program. See also FTSTOR.

Calling Sequence: CALL GTSTOR(amt,a,offset,lenget,retcod)

Arguments:

amt number of bytes to get. This number is always rounded up to a multiple of 8. amt=0
 requests the maximum storage available.

488 GTSTOR - MUSIC/SP User's Reference Guide

a an array relative to which the storage area is referenced.

offset distance in bytes from the array to the storage area. The allocated area is always on a
 doubleword boundary. This is set to 0 if there is an error.

lenget the number of bytes to get(a multiple of 8). If there is an error, lengot is set to 0.

retcod return code:
 0 successful.
 1 requested storage not available.
 2 invalid request or argument value (e.g. amt<0 for get).
 3 not OS mode.

Note: GTSTOR does not clear storage. The caller should do this (by calling the ZERO subroutine) if
 desired.

GULPDF

This subroutine is used to define a file to be processed using GULPRD and/or GULPWR subroutines for
efficient reading and writing of large amounts of data.

Calling Sequence: CALL GULPDF(fileno {,sblk,filid} ,blksiz,numblk)

Arguments:

fileno specifies the unit number and must be an integer from 1 to 15 inclusive. These numbers
 correspond to a /FILE statement defining a UDS-type disk data set or file.

blksiz is the size of each block of data (in bytes) and is limited only by the size of the array to be
 used for data.

numblk The program sets numblk to the number of blocks of data which can be stored in the data set.

sblk is optional, it specifies the physical record number (number of the 512 byte block) to be used
 as the first block of a logical data set. If sblk is used then filid must be specified also.

Filid is a logical unit number (specified by the user) by which this logical file is to be referenced,
 and must be a value from 1 to 32 inclusive: All arguments are integers.

Notes:

1. If sblk and filid are specified, the program can be called more than once for the same fileno permitting
 several logical files to be defined on one data set. If sblk and filid are not specified, they are assumed to
 be equal to 1 and fileno, respectively.

2. When the data set is originally allocated, a record size of 128 bytes should be specified. For a file, the
 record format should be F or U. If the file is to have n blocks of blksiz bytes each, the number of
 records specified at allocation time should be (with the result of the division truncated before multiplica-
 tion):

 (blksiz + 511)
 4n ——————————————
 512

 Chapter 9. System Subroutines - GULPDF 489

3. The actual amount of disk space used for each logical block is a multiple of 512 bytes. For this reason,
 very small blksize specifications, or those just slightly larger than multiples of 512 tend to waste disk
 space.

4. No other I/O statements (direct access or sequential) should be used on data sets used by these routines.

5. The GULP routines can be used only with UDS or files on disk. They cannot be used with tape files.

6. When using GULPWR to write to a new file for the first time, gaps must not be left between blocks.
 For example, you may not write blocks 1,2, and 5 in that order, because blocks 3 and 4 would be a gap.
 A sequence such as 1,2,3,2,4,5 is allowed. Also, you may not read a block which has never been writ-
 ten. These restrictions do not apply to UDS files.

GULPRD

This subroutine is used to read a file defined by a call to the GULPDF subroutine.

Calling Sequence: CALL GULPRD(filid,blkno,array {,len})

 or

 CALL GULPRD(fileno,blkno,array {,len})

Arguments:

filid specifies the logical unit defined in the call to GULPDF. If it was not specified, filid should
 be the fileno specified in the call to GULPDF.

blkno is the number of the logical block at which reading is to begin.

array is the variable into which the data is to be read.

len is the number of bytes of data to be read, and its value must be from 1 to blksiz. blksiz is the
 argument supplied with GULPDF.) Len is optional and if omitted, blksiz is used.

Notes:

1. For a given block, if more data is read than had been written, the excess data has an unpredictable value.

2. All arguments are integers, except array which can be any type.

GULPWR

This subroutine is used to write a file defined by a call to GULPDF. (Arguments follow the same rules as
GULPRD.)

Calling Sequence: CALL GULPWR(filid,blkno,array {,len})

 or

 CALL GULPWR(fileno,blkno,array {,len})

490 GULPWR - MUSIC/SP User's Reference Guide

Arguments:

filid specifies the logical unit defined in the call to GULPDF. If it was not specified, filid should
 be the fileno specified in the call to GULPDF.

blkno is the number of the logical block at which writing is to begin.

array is the variable into which the data is to be written.

len is the number of bytes of data to write, and its value must be from 1 to blksiz. blksiz is the
 argument supplied with GULPDF.) Len is optional and if omitted, blksiz is used.

HWORD

This subroutine is a FORTRAN INTEGER function which returns the first two bytes of the argument x.
Your program must declare this function as INTEGER.

Calling Sequence: n=HWORD(x)

ITSFxx

The following are indexed text search (ITS) retrieval subroutines for basic indexing:

 ITSFID initialization/dynamic call
 ITSFIW initialization/workarea call
 ITSFOP open a search set
 ITSFSS search string
 ITSFSW search word list
 ITSFOR order result list
 ITSFRE retrieve results
 ITSFCL close search

See the topic "ITS Subroutines" later in this chapter for more information.

I2C

This routine converts an integer to its EBCDIC character representation.

Calling Sequence: CALL I2C(i,string,sublen)

Arguments:

i any 4 byte location to be converted to its EBCDIC character representation.

string is the output string where the EBCDIC character representing the original string is returned.
 The character string representing the number is left justified in string. String must be at least
 12 bytes long.

sublen is a returned value that contains the length of the character string stored in string.

 Chapter 9. System Subroutines - I2C 491

Example:

 Given that:

 I --> 888

 CALL I2C(I,STRING,SUBLEN)

 Returns:

 I --> 888
 STRING --> '888bbbbbbbbb'
 SUBLEN --> 3

I2X

This routine converts an integer to its hexadecimal character representation.

Calling Sequence: CALL I2X (i,hexstr)

Arguments:

i any 4 byte location to be converted to its hexadecimal representation.

hexstr is the output string where EBCDIC hexdigits representing the original string are returned.
 Hexstr must be at least 8 bytes long.

Example:

 Given that:

 I --> 249

 CALL I2X(I,HEXSTR)

 Returns:

 I --> 249
 HEXSTR --> '000000F9'

KEEPIN

This subroutine is used to keep the contents of the input area for 3270-type workstations only. When a
response to a conversational read is entered in the input area, it is not erased when the ENTER key is
pressed. (See CLRIN.)

Calling Sequence: CALL KEEPIN

492 KEEPIN - MUSIC/SP User's Reference Guide

LAND

This subroutine is a FORTRAN INTEGER function which is used to perform a logical and of two fullword
operands a and b.

Calling Sequence: n=LAND(a,b)

Example:

 N=LAND(ABLE,BAKER)

LBCOMP

This subroutine is a FORTRAN INTEGER function used for comparing bytes. The function returns a value
of -1, 0, or 1 corresponding respectively to whether a is less than, equal to, or greater than b.

Calling Sequence: m=LBCOMP(a,ka,b,kb,n)

Arguments:

a is one location of bytes.

ka indicates which byte to start with at location a. (Bytes are numbered starting at 1, not 0.)

b is another location of bytes.

kb indicates which byte to start with at location b. (Bytes are numbered starting at 1, not 0.)

n is the number of bytes to compare. If n is less than one, the function returns a value of zero.

Example:

 IF(LBCOMP(ALPHA,1,BETA,3,2)) 10,20,30

LBMOVE

This subroutine is used to copy bytes from one location in main storage to another location.

Calling Sequence: CALL LBMOVE(a,ka,b,kb,n)

Arguments:

a is the location in main storage of the bytes to be moved.

ka indicates which byte to start with at location a. (Bytes are numbered from 1, not 0.)

b is the location in main storage to move the bytes from location a.

kb indicates which byte to move to at location b. (Bytes are numbered from 1, not 0.)

n is the number of bytes to move. If n is less than one, no action is taken.

 Chapter 9. System Subroutines - LBMOVE 493

Example:

 DIMENSION ABLE(20),BAKER(20)
 :
 CALL LBMOVE(ABLE(5),2,BAKER(2),3,40)

LCOMP

This subroutine is a FORTRAN INTEGER function is used to compare bytes. The function returns a value
of -1, 0, or 1 corresponding respectively to whether a is less than, equal to, or greater than b.

Calling Sequence: m=LCOMP(a,b,n)

Arguments:

a is one location of bytes.

b is another location of bytes.

n is the number of bytes to compare. If n is less than one, the function returns a value of zero.

Example:

 IF(LCOMP(I,J,2)) 10,20,30

LCOMPL

This subroutine is a FORTRAN INTEGER function which is used to transform the single full word argument
to its 1's complement.

Calling Sequence: n=LCOMPL(a)

LJUST

This routine left justifies a substring, within a 1 to 256 character string, defined as the first non-blank charac-
ter from the left and the last non-blank character.

Calling Sequence: CALL LJUST(string,strlen,sublen,pad)

Arguments:

string is a 1 to 256 character string to be left justified.

strlen is the length of the string, an integer in the range of 1 to 256. When strlen =0 no action is
 taken by LJUST.

sublen is the length of the character string defined by the first non-blank character from the right.

pad all trailing blanks in the string are converted to the pad character.

494 LJUST - MUSIC/SP User's Reference Guide

Example:

 Given that:

 STRING --> 'bb12345b'
 STRLEN --> 8
 PAD --> 'b'

 CALL LJUST(STRING,STRLEN,SUBLEN,PAD)

 Returns:

 STRING --> '12345bbb'
 STRLEN --> 8
 SUBLEN --> 5

LMOVE

This subroutine is used to copy bytes in main storage.

Calling Sequence: CALL LMOVE(a,b,n)

Arguments:

a is the start of the location in main storage of the bytes to move.

b is the start of the location to receive a copy of the bytes.

n is the number of bytes to move. If n is less than one, no action is taken.

LN

This subroutine gets the length of a character string, not counting trailing blanks.

Calling Sequence: n=LN(charvar)

 or

 n=LN(area,len)

Arguments:

charvar is a VS Fortran character variable or character array item. The declared length is found from
 the extra arglist info passed by VS Fortran.

area is any character string, of length "len".

n is the returned length of the string, not counting trailing blanks. n=LN(area,len) is equiva-
 lent to n=LOCATE(area,-len, ' ',-1), i.e. backscan for a nonblank.

 Chapter 9. System Subroutines - LN 495

Notes:

1. The first form, with only 1 argument, is valid only if the argument is a VS Fortran character item. For a
 non-char item, the length is unknown and n=0 is returned. No error message is issued.

2. If "len" is 0 or negative, n=0 is returned.

LOCATE

This subroutine searches for the substring within a string. If the string is located n is set to the starting posi-
tion (i.e. byte number, counting from 1) of the substring which matches str. If the search is unsuccessful, n is
set to zero.

LOCATE may be used as a subroutine or as an integer function.

Calling Sequence: CALL LOCATE(a,la,str,len,n)

 or

 n=LOCATE(a,la,str,len)

Arguments:

a location of the string to be searched.

la is the length of string a It can be specified as a negative or positive integer. If positive, the search for
 the substring starts at the beginning of a and proceeds forward. If la is negative, the search starts at
 the end of a and searches backwards. la should not be 0.

str is the substring to search for.

len is the length of str (in bytes) and must have an absolute value between 1 and 256 inclusive. It can be
 negative or positive. If len is negative, the search is for the first string not equal to str. Note that if
 len is negative, n=0 means that all substrings of a are equal to str.

LOCNAM

This subroutine changes an output file name to make it local to the current directory (if necessary).

Calling Sequence: CALL LOCNAM(filnam)

Arguments:

filnam is a 64-char file name, that will be used for output or append. This routine adds ".\" (restrict
 the name to the current directory - or lower) to the front of the name if the name does not
 already start with any of the following:

 id: (a specific userid implies root of that id)
 \ (root directory or a specific subdirectory)
 .\ (current directory)
 ..\ (next higher directory)
 / (special names like /input imply the root)

496 LOCNAM - MUSIC/SP User's Reference Guide

 This is similar to what the /PURGE command does.

For example, suppose an application lets a user specify a file to which some data is to be appended (e.g. mail
copy function with the append option). The application should call this routine to adjust the name. If the
user specifies file name "abc", this routine would change it to ".\abc". a name like "sam:abc" or "\mydir\abc"
would be left as is.

If this routine is not called, there is real danger of a privileged user appending to a public file that he/she does
not own, thus corrupting the public file without realizing it.

LOR

This subroutine is a FORTRAN INTEGER function which is used to perform a logical or of the two full
word arguments a and b.

Calling Sequence: n=LOR(a,b)

LSHFTL

This subroutine is a FORTRAN INTEGER function which is used to perform a logical shift left, k bits, in the
full word argument a. If k is less than 0, 0 is used. If k is greater than 32, 32 is used.

Calling Sequence: n=LSHFTL(a,k)

LSHFTR

This subroutine is a FORTRAN INTEGER function which is used to perform a logical shift right, k bits, in
the full word argument a. If k is less than 0, 0 is used. If k is greater than 32, 32 is used.

Calling Sequence: n=LSHFTR(a,k)

LXOR

This subroutine is a FORTRAN INTEGER function which is used to perform a logical exclusive or of the
two full word arguments a and b.

Calling Sequence: n=LXOR(a,b)

MA2E

This subroutine translates 8-bit ASCII to (MUSIC) EBCDIC. See also: ME2A, A2E, and E2A subroutines.

Calling Sequence: CALL MA2E(a,len)

 Chapter 9. System Subroutines - MA2E 497

Arguments:

a is the data to be translated.

len is the number of bytes to be translated (0 or more). length may exceed 256. No action is taken if
 length is 0 or less. (This routine is re-entrant.)

Notes:

1. This is a one-to-one mapping between the 256 ASCII and 256 EBCDIC characters. When routines
 MA2E and ME2A are used successively on the same data, there is no net change. It can therefore be
 used for storing extended ASCII (accented, foreign, and graphics chars, etc.) or binary ASCII on
 MUSIC in EBCDIC. When the data is later translated back to ASCII, nothing will be lost.

2. Most ASCII control characters are translated correctly. In particular: cr, lf, ht (tab).

3. This translation is very close to that done by ind$file (3270 file transfer). ME2A's translation of
 EBCDIC 6a to d5 is one exception; ind$file translates it to 7c, making ind$file not one-to-one.

4. Some notable characters:

 EBCDIC <---> ASCII
 4a (cent sign) e5
 4f (solid vert bar) 7c (split vert bar)
 5f (not sign) 5e (caret)
 6a (split vert bar) d5
 79 60 (grave accent)

MCNCAT

This routine can replace VS Fortran's CNCAT# (in IFYCNCAT or AFBCNCAT) concatenation routine, in
cases where the Fortran run-time library routines are not available (e.g. MAIL).

Place /INC $SUB:MCNCAT.OBJ in the program or LKED the file. (Note: This routine should *not* be
added to the subroutine library.)

Calling Sequence: CALL MCNCAT(src1,len1,src2,len2,...,dest,destln)

Entry point CNCAT# is equivalent to MCNCAT. This is equivalent to: dest=src1//src2//...

Strings can be any length, including 0. If len<=0, string is considered to be null. The resulting string is
truncated or blank-padded to match the target string length. Immediate return if # arguments is not even and
>=2.

ME2A

This subroutine translates (MUSIC) EBCDIC to 8-bit ASCII. See also: MA2E, A2E, and E2A subroutines.
(This routine is re-entrant.)

Calling Sequence: CALL ME2A(a,len)

498 ME2A - MUSIC/SP User's Reference Guide

Arguments:

a is the data to be translated.

len is the number of bytes to be translated (0 or more). length may exceed 256. No action if length is 0
 or less.

Notes:

1. This is a one-to-one mapping between the 256 ASCII and 256 EBCDIC characters. When routines
 MA2E and ME2A are used successively on the same data, there is no net change. It can therefore be
 used for storing extended ASCII (accented, foreign, and graphics chars, etc.) or binary ASCII on music
 in EBCDIC. When the data is later translated back to ASCII, nothing will be lost.

2. Most ASCII control characters are translated correctly. in particular: cr, lf, ht (tab).

3. this translation is very close to that done by ind$file (3270 file transfer). me2a's translation of EBCDIC
 6a to d5 is one exception; ind$file translates it to 7c, making ind$file not one-to-one.

4. Some notable characters:

 EBCDIC <---> ASCII
 4a (cent sign) e5
 4f (solid vert bar) 7c (split vert bar)
 5f (not sign) 5e (caret)
 6a (split vert bar) d5
 79 (grave accent) 60 (grave accent)

MODFLD

This routine is used to re-define the attributes of modifiable fields by field number of screens designed using
PANEL. The attributes that can be modified are: protection, intensity, hide, and skip. See the PANEL docu-
mentation in Chapter 10. Utilities for details about these.

Calling Sequence: CALL MODFLD(panel,ifld,irc,{iprt,intens,ihide,iskp,fldlen})

Arguments:

panel is the panel name whose attributes are to be modified. Note that panel must be declared as external
 in the calling program.

ifld is the field number whose attributes are to be modified.

irc is the return code.
 =0 normal return, instructions followed as specified.
 =1 invalid field number, ifld is either less than zero or greater than the highest field number avail-
 able for this panel.
 =2 skip setting could not be set because the field following the target field did not have an attribute
 of x'6c' or x'7c' (protected, nondisplay).

iprt is the protection flag:
 <=-1 set to unprotected
 =0 make no change to current field protection status
 >=1 set to protected

 Chapter 9. System Subroutines - MODFLD 499

intens is the intensity flag:
 <=-1 set to low intensity
 =0 make no change to current field intensity status
 >=1 set to high intensity

ihide is the hide flag:
 <=0 make no change to current hide setting.
 >=1 set attribute to hide (nondisplay, noprint, nondetectable)
 To undo hide, reset the intensity; hide is a form of intensity.

iskp is the skip flag:
 <=-1 set to no skip
 =0 make no change to current skip status
 >=1 set skip
 Skip for a field can only be set if the field is immediately followed by a protected, numeric, nondis-
 play/ nondetectable/noprint field.

fldlen the length of the panel field is returned.

Note: iprt, intens, ihide, and iskp are optional positional arguments. If you do not wish to choose one of
 these options, assign a value of 0 (zero). If the option(s) appears at the end of the sequence, it may
 be left out.

Examples:

 1. The following shows how to change the intensity of field number 2.

 CALL MODFLD(PANEL1,2,IRC,0,1,0,0)
 or CALL MODFLD(PANEL1,2,IRC,0,1)

 2. The following example indicates that field number 3 is to be hidden.

 CALL MODFLD(PANEL1,3,IRC,0,0,1)

MODOPT

This routine is used to modify PANEL options previously defined using the PANEL subsystem. The options
that can be modified are:

 1 upper/lower case translation.
 2 PF13-PF24 translated to PF1-PF12.
 3 PA2 automatic reshow.
 4 PF12 as print screen.
 5 help screen availability.
 6 the help screen to be displayed (by name).

Calling Sequence: CALL MODOPT(panel,irc,icode,iset)

Arguments:

panel is the panel name whose attributes are to be modified. Note that PANEL must be declared as exter-
 nal in the calling program.

500 MODOPT - MUSIC/SP User's Reference Guide

irc is the return code.
 =0 normal return, instructions followed as specified.
 =1 invalid icode number, ICODE <=0 or > 5.

icode is option number to be reset.
 =1 upper/lower case translation.
 =2 PF13-PF24 translated to PF1-PF12.
 =3 PA2 automatic reshow.
 =4 PF12 as print screen.
 =5 help screen available.
 =6 help screen to be displayed (by name)

iset is the option setting desired:
 <=-1 turn off option.
 =0 make no change to current setting.
 >=1 turn on the option.
 = help panel name declared external in the calling program.

Examples:

 CALL MODOPT(PANEL1,IRC,6,HELP1)

 CALL MODOPT(PANEL1,IRC,1,-1)

MOVE

This subroutine copies full words from one location to another. n full words starting from location a to loca-
tions starting at location b.

Calling Sequence: CALL MOVE(a,b,n {,m})

Arguments:

a is the location of the words to be moved.

b indicates the location to move the words.

n is the number of full words. If n is less than 1, no action is taken.

m is optional, it specifies the length of each element. If m is omitted, 4 is assumed.

NOCRLF

This subroutine is for ASCII terminals only. A call to this subroutine suppresses the carriage return-line feed
which normally occurs at the end of each line of output. (See CRLF.)

Calling Sequence: CALL NOCRLF

 Chapter 9. System Subroutines - NOCRLF 501

NOECHO

This subroutine is only used for 3270-type workstations. A call to this subroutine causes the contents entered
to the input area of the screen, when responding to a conversational read, not to be displayed on the output
area of the screen when the ENTER key is pressed. (See ECHOIN.)

Calling Sequence: CALL NOECHO

NONCAN

A call to this subroutine makes the program non-cancellable. That is, the /CANCEL command can not be
used to terminate the program. Use CALL CANCAN to remove the effect of CALL NONCAN. Note that a
call to NONCAN only takes effect after the next conversational read or call to CLSOUT.

Calling Sequence: CALL NONCAN

NOPAUS

A call to this subroutine inhibits the system function of stopping every few lines to give the user a chance to
cancel the job that is running. (It is meaningful only with 1050 terminals.) See also PAUSE.

Calling Sequence: CALL NOPAUS

NOSHOW

This subroutine is only used for 3270-type workstations. A call to this subroutine causes the characters being
entered to the input area of the screen, when responding to a conversational read, not to be displayed. (See
SHOWIN.)

Calling Sequence: CALL NOSHOW

NOTRIN

This subroutine suppresses the translation of terminal input data from the terminal code to EBCDIC. This
can be used for special applications on ASCII terminals, where the program requires the original terminal
data stream. The translation of terminal output data can be accomplished using the X'41' carriage control.
Normal translation can be resumed by calling the subroutine TRIN.

Calling Sequence: CALL NOTRIN

NPRMPT

A call to this subroutine can be used to delete the conversational read prompt message entirely. If however,
the workstation is set up to pause periodically during output (for example, the /PAUSE command has been
issued from a workstation), a question mark (?) is issued as a prompt. (See PROMPT.)

502 NPRMPT - MUSIC/SP User's Reference Guide

Calling Sequence: CALL NPRMPT

NSGNOF

A call to this subroutine removes the request to schedule a /OFF next. It can be used to negate the effect of a
previous call to SIGNOF.

Calling Sequence: CALL NSGNOF

NXTCMD

A call to this subroutine causes the specified command, or program, to be executed. Depending on the
options specified, the command is either run concurrently with the calling program using multi-tasking
support or is run after the calling program terminates using program chaining.

Calling Sequence: CALL NXTCMD(cmd,len{,opt})

Arguments:

cmd is the command string to be executed. If the command string specified is not a valid MUSIC
 command an attempt is made to schedule the user program with that name. The command or
 program name part of the string should be in upper case. The second part of the command string is
 the parameter (PARM field).

len is the total length of the command string and should not exceed 196. If the string is too long, the
 excess characters at the end are ignored.

opt is an optional bit-string value that controls the execution of the command. Only the bits the low
 order byte are used. The high order bytes must be zero. The X'80' bit determines if the request is for
 multi-tasking execution or program chaining.

Program Chaining

In program chaining the system remembers the command specified in the NXTCMD call and executes it
automatically when the calling program terminates. The following options are available.

x'80' Must be zero.

x'40' Not used.

x'20' Not used.

x'10' Not used.

x'08' Not used.

x'04' Not used.

x'02' Not used

x'01' Non-cancelable.

 Chapter 9. System Subroutines - NXTCMD 503

Commands that are processed directly by MUSIC's workstation command scanner are not supported by
program chaining. These are /COMPRESS, /CTL, /DISCON, /EXEC, /NS, /PAUSE, /PROMPT,
/REQUEST, /RUN, /STATUS, /TIME, /TEXT, /TABIN, /TABOUT, /USERS, /WINDOW.

Multi-Tasking

When the multi-tasking option is used, the system creates a new session and runs the command immediately.
This is referred to as the child task. The original session is called the parent. There are a number of options
available that define the relationship of the child and the parent. Since multi-tasking is based on the systems
multi-session support, multi-session commands such as /NEXT and /PREVIOUS can be used to switch
between child and parent.

x'80' Must be set to 1.

x'40' Parent will wait for child task to end. This option is ignored if the parent or child is a back-
 ground task (BTRM).

x'20' Delete child task at child end of job.

x'10' Displays job startup messages

x'08' Control of the workstation remains with the parent task once the child is started.

x'04' Hide parent task. Multi-session commands cannot be used to return to parent before child
 terminates.

x'02' Run task in background (BTRM).

x'01' Make child task non-cancelable.

x'0C' Delete child when parent task terminates.

Examples:

 CALL NXTCMD('HELP SORT',9,128+64+32)

This invokes the HELP facility for topic "sort". The parent task waits, and the new task (help) is deleted
when the help program ends.

 CALL NXTCMD('EDIT FILE1',10)

This uses program chaining to call the editor.

NXTPGM

A call to this subroutine causes the specified program to be executed when the current job terminates. This
routine can also be used to schedule an always program. An always program is one that is run whenever the
workstation would otherwise return to command mode and can be used to run command mode replacement
programs such as TODO, or provide sophisticated program chaining facilities. A call to this subroutine with
a blank name cancels the previous call.

Calling Sequence: CALL NXTPGM('name '{,'parm',len,opt})

504 NXTPGM - MUSIC/SP User's Reference Guide

Arguments:

name is the name of the file which contains the job to be executed. The length of name can be from 1 to
 22 characters. If name is less than 22 characters in length, it must be terminated with a blank. If the
 option argument is 16 or 17, the file name can be up to 64 characters long and must be terminated
 with a blank.

parm is a character string which will be passed to the program that is to be executed. The maximum
 length of parm is 74 characters.

len is the length of the parameter string. If it is not specified, the parameter string must be terminated by
 a $ sign (which is not part of the actual parm).

opt is one of the following numbers informing the system that the program is:
 1 - non-cancelable
 4 - an "always" program
 5 - both, non-cancelable and always program
 16 - long file name (up to 64 characters)
 17 - non-cancelable and long file name

Note: If you do not wish to pass any parm to the program, either specify only the name argument, or spec-
 ify the 2nd argument as 0. The parm field is not used by always programs.

Examples:

 CALL NXTPGM('name ')

 CALL NXTPGM('name ','parm$')

 CALL NXTPGM('name ','parm',len)

 CALL NXTPGM('name ','parm',len,1) (non-cancelable)

 CALL NXTPGM('name ',0,0,4) (always program)

NXWORD

This subroutine gets the next word from a string. Warning: This routine makes assumptions about how the
TOUC subroutine is coded.

Usage:

 POS=1
 DO UNTIL LENOUT=0
 CALL NXWORD(pos,a,lena,out,maxout,lenout,opt)
 ...(PROCESS THE WORD IN "OUT")...
 END-UNTIL

Arguments:

pos indicates the starting position in the string. It should be set to 1 before calling NXWORD, to
 start at the beginning of the string (i.e. to get the first word). NXWORD sets pos to the posi-
 tion of the delimiter (blank or comma) following the end of the returned word, or to lena+1
 if no word found.

 Chapter 9. System Subroutines - NXWORD 505

a is the string.

lena is the length of the string.

out is an area, of length maxout, to receive the word. The word is truncated or blank-filled to
 match the area. The search starts at position pos in the string. Delimiters (blanks and
 (optionally) commas) are skipped to get to the start of the next word. The word ends at the
 next delimiter or end-of-string.

maxout is the length of the output area.

lenout is the length of the word. If the output area is too small, the word is truncated to length
 maxout, but lenout is set to the true (longer) length. If there are no more words in the string,
 lenout is set to 0 and out is set to blanks.

opt is an (optional argument) numerical option value. option bits in the 4th byte are:

 x'01' Treat commas as a delimiter, in addition to blanks.
 x'02' Convert the word to upper case.
 x'04' Consider all characters between () as part of the
 keyword.
 e.g. abc(xyz ttt)
 abc(1,2)
 abc(xyz(1 2) fred)

 If omitted, 0 is assumed.

Examples:

 CHARACTER A*10/'ABCD EFG '/,OUT*8
 POS=1
 CALL NXWORD(POS,A,10,OUT,8,LENOUT)
 ... SETS OUT='ABCD ', LENOUT=4, POS=5
 CALL NXWORD(POS,A,10,OUT,8,LENOUT)
 ... SETS OUT='EFG ', LENOUT=3, POS=9
 CALL NXWORD(POS,A,10,OUT,8,LENOUT)
 ... SETS OUT=' ', LENOUT=0, POS=11

See also: PROCOP, ABBREV, GETOP, and SEP.

OPNFIL

Dynamically open a file. Refer to the section "Dynamic Access to Files" for a description of this routine.

PANFLD

This routine queries infomation about PANEL fields.

Calling Sequence: CALL PANFLD(PANEL,RC,FLD,ROW,COL,FLDLEN,PROT,
 INTENS,HIDE,SKIP,ATTR,TOTLEN)

506 PANFLD - MUSIC/SP User's Reference Guide

Arguments:

PANEL is the panel name whose info is to be queried. Note that PANEL must be declared as exter-
 nal in the calling program.

RC is the return code.
 = 0 normal return, instructions followed as specified.
 = 1 invalid field number, ifield <0 or > than highest
 field number available for this panel.
 = 3 wrong number of arguements. the first 3 are required
 but no more than 12 arguments can be present.

 The following are only given if FLD=0

 = 4 No field on this row, no parameters updated
 = 5 After the last field of a row, no parameters updated
 = 6 before the first field of a row information returned is about
 the first field
 = 7 in between fields of a row information returned is about
 the next field

FLD is the field number whose info is to be queried. If FLD is 0, then ROW and COL are used to
 query the field and can be anywhere in the field.

ROW is the row on the screen of the field.

COL is starting column of the field on output, or is any column in the field on input if FLD=0.

FLDLEN is the length of the panel field.

PROT is the protection flag:
 = 0 Field is unprotected
 = 1 field is protected

INTENS is the intensity flag:
 = 0 field is low intensity
 = 1 field is high intensity

HIDE is the hide flag:
 = 0 field is not hidden
 = 1 field is hidden

SKIP is the skip flag:
 = 0 Field is not skipped
 = 1 field is skiped

ATTR is the attribute byte of the field.

TOTLEN is the offset of this field from the beginning of the data portion of the COMMON block.

PARM

This subroutine is used to retrieve the parameter string which was passed to the calling program by a /PARM
statement or by a parameter string specified on the /EXEC command.

 Chapter 9. System Subroutines - PARM 507

Calling Sequence: CALL PARM(buf,buflen,prmlen)

Arguments:

buf is the receiving area which is blanked out prior to receiving the parameter string. Leading
 and trailing blanks of the parameter string are not transferred to buf.

buflen is the length of the receiving area which can have a maximum length of 256 characters.

prmlen is set (by the routine) to the actual length of the parameter string that is moved to buf. If
 prmlen is longer than buflen then only the leftmost "buflen bytes of the parameter string are
 moved to buf.

PAUSE

A call to this subroutine cancels the effect of a call to NOPAUS.

Calling Sequence: CALL PAUSE

PROCOP

This subroutine processes an option item in the format abc(xyz).

The following option forms are accepted:

 abc
 abc(xyz)
 abc=xyz
 abc(xyz)
 abc= xyz

Calling Sequence: CALL PROCOP(a,len,kwlen,subpos,sublen,numval)

Arguments:

a is the option string. It should not have leading or trailing blanks.

len is the length of a.

kwlen is the (output) length of keyword part (abc), i.e. length up to first (or = or end of string.

subpos is the (output) position in a of start of suboption (xyz), or 0 if no suboption.

sublen is the (output) length of suboption (xyz), or 0 if none.

numval is the (output) numeric value of mmm (if mmm is 1 to 8 digit chars), otherwise -1. mmm is
 xyz (ignoring leading and trailing blanks) if there is a suboption, otherwise mmm is abc.

Examples:

508 PROCOP - MUSIC/SP User's Reference Guide

 CALL PROCOP('123',3,N1,N2,N3,N4) --> 3,0,0,123
 CALL PROCOP('12X',3,N1,N2,N3,N4) --> 3,0,0,-1
 CALL PROCOP('AB(257)',7,N1,N2,N3,N4) --> 2,4,3,257
 CALL PROCOP('AB=257',6,N1,N2,N3,N4) --> 2,4,3,257
 CALL PROCOP('AB(257)',9,N1,N2,N3,N4) --> 2,5,3,257
 CALL PROCOP('AB= 257',7,N1,N2,N3,N4) --> 2,5,3,257
 CALL PROCOP('AB(25X)',9,N1,N2,N3,N4) --> 2,5,3,-1
 CALL PROCOP('AB(-257)',8,N1,N2,N3,N4) --> 2,4,4,-1

See also: NXWORD, ABBREV.

PROMPT

Cancels the effect of the NPRMPT subroutine.

Calling Sequence: CALL PROMPT

PURGE

This routine deletes a file from the Save Library.

Calling Sequence: CALL PURGE(filename,irc)

 or

 CALL PURGE(-1,longname,irc)

Arguments:

filname is a file name, with or without the userid prefix. If the name is less than 22 characters long,
 it must be followed by at least 1 blank. The maximum length is 22 characters.

-1,longname is a long file name, up to 64 characters. If the name is not the maximum length, it must be
 followed by a blank.

irc is an integer return code, 0 meaning the file was deleted successfully. For the meaning of
 nonzero return codes (file not deleted), see the topic "Dynamic Access to Files" of this
 guide. Also, HELP is provided with the topic ERRORS. (For example, 30 means file not
 found, 33 means file in use.)

Note: This routine does not preserve R0, R1.

Example:

 CALL PURGE('MYFILE ',K)

QFOPEN

Opens a file and defines a buffer area. Refer to the section "Dynamic Access to Files" for a description of
this routine and QFCLOS, QFREAD, QFRBA, QFREW, and QFBKRD.

 Chapter 9. System Subroutines - QFOPEN 509

REREAD

(FORTRAN (G1) only) - allows rereading records as many times as desired, without the expense of physical
I/O. The record can be read with the same or different formats and lists. REREAD must be called only once
at the beginning of the FORTRAN program. Thereafter a formatted or list-directed read from unit 99 rereads
the record read by the last formatted read. No other I/O statement may appear between the two READ state-
ments.

The FORMAT and list should specify single record input, or the results are undefined. The following is an
example of a case that should be avoided:

 READ(99,200)I,J
 200 FORMAT(I4)

Calling Sequence: CALL REREAD

Example:

 *Go
 list sample
 *In progress
 CALL REREAD
 8 READ(5,1,END=10)I
 1 FORMAT(I1)
 GO TO (2,3),I
 2 READ(99,4)J
 4 FORMAT(1X,I10)
 WRITE(6,5)J
 5 FORMAT('0FORMAT 4 WAS USED, J=',I10)
 GO TO 8
 3 READ(99,6)A
 6 FORMAT(1X,F10.2)
 WRITE(6,7)A
 7 FORMAT('0FORMAT 6 WAS USED, A=',F10.2)
 GO TO 8
 10 STOP
 END
 /DATA
 1 4
 2 4
 *End
 *Go
 sample
 *In progress
 MAIN = 000250
 003668 BYTES USED
 EXECUTION BEGINS

 FORMAT 4 WAS USED, J= 4

 FORMAT 6 WAS USED, A= 0.04
 STOP 0
 *End
 *Go

510 REREAD - MUSIC/SP User's Reference Guide

RJUST

This routine right justifies a substring, within a 1 to 256 character string, defined as, the first non-blank char-
acter from the left and the last non-blank character.

Calling Sequence: CALL RJUST(string,strlen,sublen,start,pad)

Arguments:

string is a 1 to 256 character string to be right justified.

strlen is the length of the string, an integer in the range of 1 to 256. When strlen =0 no action is
 taken by RJUST.

sublen is the length of the character string defined by the first non-blank from the left and the first
 non-blank character from the right.

start this is the starting byte of the substring justified on string.

pad all leading blanks in the string are converted to the pad character, after the text is justified.

Example:

 Given that:

 STRING --> 'bb12345b'
 STRLEN --> 8
 PAD --> 'b'

 CALL RJUST(STRING,STRLEN,SUBLEN,START,PAD)

 Returns:

 STRING --> 'bbb12345'
 STRLEN --> 8
 SUBLEN --> 5
 START --> 4

RSTART

A call to this subroutine initializes a general purpose random number generator routine. The basic technique
used is a combination of a multiplicative congruential generator and a shift-register generator. Each time a
random number is requested, two new numbers are generated and then combined to form the next uniformly
distributed number of the sequence (or the number from which a normal or exponentially distributed number
is derived).

Calling Sequence: CALL RSTART(i,j)

Arguments:

i is an integer which becomes the starter of the multiplicative congruential generator sequence. If i is
 zero then the sequence of numbers that it starts is zero, so that CALL RSTART (0,j) provides a pure
 shift register generator.

 Chapter 9. System Subroutines - RSTART 511

j is an integer which becomes the starter of the shift-generator. If j is zero then the sequence of
 numbers that it starts is zero, so that CALL RSTART(i,0) provides a pure multiplicative generator.

After calling RSTART, calls to functions UNI, VNI, RNOR, REXP, IUNI, and IVNI can be made to get the
next random number in the sequence.

u=UNI(0) provides a normalized floating point variate uniformly distributed on (0<=u<1).

v=VNI(0) provides a normalized floating point variate uniformly distributed on (-1<=v<1).

r=RNOR(0) provides a normalized floating point variate from the standard normal distribution, with a
 mean of 0.0 and a variance of 1.0.

a=REXP(0) provides a normalized floating point variate with the standard exponential density e**(-y)
 where (y>=0).

i=IUNI(0) provides an integer variate uniformly distributed in the range (0<=i<2**31).

i=IVNI(0) provides an integer variate uniformly distributed in the range (-2**31<=i<2**31).

Example:

 C DISPLAY 50 RANDOM NUMBERS UNIFORMLY DISTRIBUTED BETWEEN 0 AND 1
 REAL X,UNI
 CALL RSTART(12345,98765)
 DO 10 N=1,50
 X=UNI(0)
 10 WRITE(6,20) X
 20 FORMAT(1X,F10.5)
 STOP
 END

Notes:

1. If RSTART(0,0) is used, every number generated will be zero. If CALL RSTART is not used, built-in
 starting values are used.

2. Because the basic random number is a combination of multiplicative and shift-register generators, the
 resulting sequence has a very large period (approximately 5 x 10**18). The random variables returned
 from the RNOR and REXP routines have exactly the required distribution, normal and exponential
 respectively. Both the RNOR and the REXP procedures are extremely fast, generating a variate in less
 than twice the time required to generate the uniform variate.

RVRS

This routine reverses a 1 to 256 character string by swapping the characters end to end.

Calling Sequence: CALL RVRS(string,strlen)

Arguments:

string is a 1 to 256 character string to be reversed.

strlen is the length of the string, an integer in the range of 1 to 256. When strlen =0 no action is

512 RVRS - MUSIC/SP User's Reference Guide

 taken by RVRS.

Example:

 Given that:

 STRING --> 'abcdefgh'
 STRLEN --> 8

 CALL RVRS(STRING,STRLEN)

 Returns:

 STRING --> 'hgfedcba'
 STRLEN --> 8

SAVREQ

A call to this subroutine schedules a /SV name command to be scheduled for execution. The command is
executed automatically as soon as the program terminates execution, whether it terminates normally or
abnormally. The save is not be executed if the job is canceled by the system because of excessive output, or
if a call to SIGNOF is made after the call to SAVREQ, or if the job is canceled by a /CANCEL command.

Calling Sequence: CALL SAVREQ('name ')

Arguments:

name is the file name to be used and must be six characters in length.

SEP

This subroutine separates out fields separated by 1 or more blanks/commas.

Calling Sequence: CALL SEP(a,alen,maxnum,num,pos(i),len(i))

Arguments:

a is the string to be processed (input).

alen is the length of the string (input).

maxnum is the size of arrays pos and len (input).

num is the number of fields found (0 to maxnum) (output).

pos(i) is the position of the i'th field (output). (Position 1 is the first character of the string.)

len(i) is the length of the i'th field (output).

 Chapter 9. System Subroutines - SEP 513

Notes:

1. If there are more than maxnum fields, the extra ones are ignored.

2. If the string contains only blanks or commas, or if alen=0, num is set to 0.

SETINF

Specify information about a new file to be opened by OPNFIL. Refer to the section "Dynamic Access to
Files" later for a description of this routine.

SHOWIN

A call to this subroutine cancels the effect of a previous call to the NOSHOW subroutine.

Calling Sequence: CALL SHOWIN

SIGNOF

A call to this subroutine schedules a /OFF command which is executed automatically as soon as the program
terminates execution, whether it terminates normally or abnormally, unless a call to SAVREQ is made after
the call to SIGNOF. (See NSGNOF.)

Calling Sequence: CALL SIGNOF

SRTMUS

Generalized disk sort subroutine. For information see "Sorting Routines" in Chapter 10. Utilities.

SSORT

This subroutine is an efficient means of sorting an array (or any table of contiguous, equal-length entries)
into ascending order based on a control field within each entry. Comparison is character-type rather than
numeric.

Calling Sequence: CALL SSORT(array,num,len,keylen,{keypos})

Arguments:

array is the table of entries to be sorted. If array is a logical*1 2-dimensional array, the dimen-
 sions of it would be (len,num). If array is a fullword integer array, the dimensions of it
 would be (len/4,num).

num is the number of entries in array. If num is less than 2, the subroutine returns since no sort is
 required.

514 SSORT - MUSIC/SP User's Reference Guide

len is the length in bytes of each entry and must be a number from 1 to 256 inclusive.

keylen is the length in bytes if the control field to be used for the sort.

keypos is the starting position (byte number, counting from 1) of the control field within each entry.
 If keypos is omitted, 1 is assumed.

STATUS

This subroutine returns a formatted line consisting of time of day, current date, service units used, and
number of users currently signed.

Calling Sequence: CALL STATUS(stline,work)

Arguments:

stline a 79 byte character string returned.

work a real*8 array of dimension 4 (real*8 work(4)).

Note: This routine is re-entrant.

STOPSK

A call to this subroutine terminates the effect of a /SKIP nnn command entered by the user. That is, lines
written to the workstation after the call to STOPSK display regardless of any previous /SKIP nnn command.
The normal effect of /SKIP nnn is restored after the first such line begins to display.

Calling Sequence: CALL STOPSK

SYSINE

A call to this subroutine indicates the status of the current job stream input file (default unit 5 from
FORTRAN).

Calling Sequence: CALL SYSINE(mcod)

Arguments:

mcod is set by this subroutine to a value depending on current status:

 0 No error conditions were associated with the last read operation from the job stream file.
 1 End-of-file was encountered at the line read by last read operation.
 2 Probable programmer error: for example, /INCLUDE nesting level exceeds 5, or an improper
 /INCLUDE command was found on the last read.
 3 Loss of file integrity caused by an I/O error or some other problem. This could be caused by
 trying to read a load module file which was created with record format FC (the default). Load
 modules should be created with record format F. The MUSIC Systems Support Group should
 be advised if this error persists.
 4 (or higher) File is not accessible. The file does not exist or is defined as private or execute only.

 Chapter 9. System Subroutines - SYSINE 515

 A user program is limited to 10 occurrences of error code 4 before the user's job is automati-
 cally terminated.

SYSINL

This subroutine can be used to find information about the current job stream input file (unit 5 from
FORTRAN).

Calling Sequence: CALL SYSINL(fn,ln,nest,mcod,k,lln,maxdep)

Arguments:

fn is the file name currently being read, returned as 8 characters with the last two always blank.

ln is returned as the line number within the current file of the last line read, with 1 being the
 first line of a file (line number 0 may occur if the first line has not been successfully read).

nest is returned as the current /INCLUDE nest level, if the user sets nest to zero before calling the
 subroutine. If the user sets nest to a value between 1 and the current nesting level before
 calling the subroutine, then information about the specified nesting level is returned. (If nest
 is outside this range, the results of the call are undefined).

mcod returns the same result as a call to SYSINE.

k returns the flags at the current nest level, as defined for subroutine SYSINR. A value of 256
 is added to k if the file is owned by the person running the program.

lln specifies a limiting line number, and if specified as -1, then no limit is set.

maxdep returns the maximum nest level the system can handle.

Note: File names beginning with a slash (/) character can be returned in the fn argument. The name
 /INPUT refers to the /INPUT file, /TRANX refers to the alternate input file used with /EXEC and
 /TRMIN means the conversational read spool file.

SYSINM

A call to this subroutine causes a message to be printed on I/O unit 6, of the form
**AT LINE nnnn of FILE xxxxxx where nnnn is the current line number of the current input file
xxxxxx. (This subroutine cannot be called from COBOL or VS Fortran programs as it is not compatible with
the OS/MUSIC interface.)

Calling Sequence: CALL SYSINM

SYSINR

This subroutine allows the user to dynamically control the system input file (default unit 5 from FORTRAN).

Calling Sequence: CALL SYSINR(fn,ln,lln,nc,k)

516 SYSINR - MUSIC/SP User's Reference Guide

Arguments:

fn is an eight character file name specified by the user, with the last two characters blank. The special
 name of '/TRMIN ' is used to request spooled conversational reads. For more information see Chap-
 ter 4. File System and I/O Interface of this guide.

ln specifies the line number to be read by the next operation.

lln specifies the limiting line number at which an end-of-file condition is to be reached. A value of -1
 specifies no limit.

nc is a control argument. If nc=1, the nest depth is advanced by one and the named input file is set to
 be read at line number ln (with ln=1 specifying the first line of the file). When the specified file is
 completely read (or up to line lln) the next read operation reads from the following line in the next
 higher level; i.e the next line in the file being processed at the time of this subroutine call. If the last
 read operation resulted in an end-of-file condition (including error conditions) then nc=1 is assumed
 to be nc=0. You can make successive calls to SYSINR if you wish to set up an input file nest, and
 then your first read statement reads as specified by the last call. Successive calls, cannot in any case,
 exceed the maximum nesting depth of 5.

 If nc=0 is specified, reading of the current file is terminated and the next read operation reads from
 line ln of file fn. If the file name fn is specified as numeric 0 then the file name is not changed from
 its current value. This function could be used to skip lines in the current file, although it is more effi-
 cient to skip lines by actually reading them.

k is a variable which specifies control flags allowing specification of the same options allowed on the
 /INCLUDE command. These options are coded in numbers, and the sum of these option numbers
 form the contents of variable k completely replacing those options currently in effect at the specified
 level.

Option Option Number

NEST 1

EOF 2 (an end-of-file return is always taken when there is no input left to be read)

ERRS 4

Notes:

1. A CALL SYSINR(0,0,0,0,0) can be used to prematurely stop the reading from the current file. The next
 read will then start with the next file in the stack or one specified in a subsequent call to SYSINR.

2. If nc=-99 is specified, all nesting levels are totally cleared.

3. Errors resulting from calls to SYSINR are given only at the time of the next read operation. For exam-
 ple, if an invalid file name is specified, no indication will occur until the program actually attempts to
 read from that file.

4. Calls to SYSINL and SYSINM after a call to SYSINR without any intervening reads can affect the
 result obtained from these subroutines.

 Chapter 9. System Subroutines - SYSINR 517

SYSMSG

This subroutine may be used to control system messages associated with scheduled commands resulting from
calls to subroutines SAVREQ and SIGNOF. If the subroutine is called, all system messages associated with
the scheduled command (except the final *End message) are suppressed. Messages issued by the program or
processor are not suppressed.

Calling Sequence: CALL SYSMSG(1)

TABS

This subroutine is used to specify input or output tab settings from within a program. Its effect is the same as
that of a /TABIN or /TABOUT command. The tab settings remain in effect after the end of the job. The
physical TAB stops on the workstation are not set by this routine.

Calling Sequence: CALL TABS(num,tab {,&n})

Arguments:

num specifies the number of tab positions being set and must be positive if input tabs are to be set, and
 must be negative if output tabs are to be set.

tab is an integer array containing the column numbers to be used, in ascending order. These are the
 same numbers that would be used in a /TABIN or /TABOUT command.

n is a statement number to return to in the event of an error. This argument is optional.

TBAS64

This subroutine converts text to base 64 (3 bytes --> 4 bytes) This is the "base 64" encoding scheme used for
e-mail mime, as defined in RFC 1521. It encodes any 8-bit text to printable characters, producing 4 output
chars for each 3 input bytes. see the translate table in this routine for the 64 printable characters used. An
additional character "=" is used for padding at the end of the output if the input length is not a multiple of 3
(see notes below); this allows the original exact length to be determined when decoding. (This routine is
re-entrant.)

See also: FBAS64 - decode from base 64; and UUENC - uuencode-style encode.

Calling Sequence: CALL TBAS64(intxt,inlen,outtxt,outlen)

Arguments:

intxt input data.

inlen length of input data. If 0 or less, outlen is set to 0 and no other action is taken.

outtxt area to receive output data. Size must be at least (n/3)*4 bytes, where n is inlen rounded up
 to a multiple of 3.

outlen this routine sets outlen to the length of the output data, including pad characters if any. it is
 always a multiple of 4.

518 TBAS64 - MUSIC/SP User's Reference Guide

Output pad characters:

If the input length is not a multiple of 3, the last input triple is padded on the right with binary zeros before it
is converted, and the last 1 or 2 bytes of the last output quartet are set to the pad character ("="). If input
length is 3m+1, there are 2 pad chars; if 3m+2 there is 1 pad char. this lets the decode routine determine the
exact length of the original input.

Notes:

1. Other 3-to-4 encoding schemes may use a different translate table and pad character, and may handle
 lengths which are not a multiple of 3 differently.

2. This routine generates ebcdic (not ascii) printable characters in the output. if ASCII characters are
 desired, the caller must convert the output to ASCII after calling this routine.

Examples:

 intxt=x'12', inlen=1: outtxt="eg==", outlen=4

 intxt=x'1234', inlen=2: outtxt="ejq=", outlen=4

 intxt=x'123456', inlen=3: outtxt="ejrw", outlen=4

 intxt=x'12345678', inlen=4: outtxt="ejrwea==", outlen=8

TBIT

This FORTRAN INTEGER function may be used in conjunction with BITON, BITOFF, and BITFLP. It
returns the current value of a bit. Your program must declare this function as INTEGER.

Calling Sequence: n=TBIT(a,k)

Arguments:

a is the location of the byte.

k is the position of the bit. k may have the values 0,1,2,... The first bit position is referred to as bit 0.
 For example, if k is 24, the value of the first bit of the fourth byte of a is returned. If k is negative, a
 value of zero is returned.

TEXTLC

This subroutine turns off the translation of lower case characters to their upper case equivalents for future
reads from a workstation during the current job. This command is similar in effect to the /TEXT LC
command.

Calling Sequence: CALL TEXTLC

 Chapter 9. System Subroutines - TEXTLC 519

TEXTUC

This subroutine turns on the translation of lower case characters to their upper case equivalents for future
reads from a workstation during the current job. This command is similar in effect to the /TEXT UC
command. This mode is the default unless changed via a CALL TEXTLC or by a /TEXT LC command.

Calling Sequence: CALL TEXTUC

TIMCON

This subroutine converts the time of day, in the form of a character string or an integer value, from one
format to another. The second parameter arg1 is converted from a format specified in n1 to a format speci-
fied in n2 and is returned in arg2. There are 16 format types listed below. Formats 0 to 13 are character
string formats and format 14 and 15 are integer values where time is expressed in seconds and minutes
respectively.

When input format type n1 is 0 (zero), the TIMCON subroutine tries to find a correct time sequence by test-
ing all formats. If a match is found, the correct time is converted into arg2 in format n2.

Calling Sequence: CALL TIMCON(n1,arg1,n2,arg2,irc{,itype})

Arguments:

n1 is the input format type. The format type can be any number from 0 to 15 as defined below.

 Type (n1/n2) Format (arg1/2) Length Example
 0(arg1 only) ? 12 any below
 1 HH 4 15
 2 HH?M 8 3 pm
 3 HHMM 4 1512
 4 HHMM?M 8 312 pm
 5 HH.MM 8 15.12
 6 HH:MM 8 15:12
 7 HH.MM?M 8 3.12 pm
 8 HH:MM?M 8 3:12 pm
 9 HHMM.SS 8 1512.55
 10 HH.MM.SS 8 15.12.55
 11 HH:MM:SS 8 15:12:55
 12 HH.MM.SS?M 12 3.12.55 pm
 13 HH:MM:SS?M 12 3:12:55 pm
 14 integer time in seconds 4 54775
 15 integer time in minutes 4 912

arg1 is the input character string if type is 0-13, otherwise for type 14 and 15 an integer*4 is expected.
 The length of the field must be at least as large as is indicated in the table above. When the input
 type of 0 is specified, the format arg1 can be any form including "noon" and "midnight" in English,
 Dutch, French, German, Italian, Portuguese, and Spanish.

n2 is the output format type (see n1 above). Type 0 is not allowed.

arg2 is the output character string if type is 1-13, otherwise for 14 and 15 an interger*4 is returned. The
 length of the field must be at least as large as is indicated in the table above.

520 TIMCON - MUSIC/SP User's Reference Guide

irc is the return code describing the conversion. The following return codes are possible:

 -1 blank input field
 1 invalid integer in time specification
 2 invalid delimiter
 3 time is not inside 0-2400 hours
 4 invalid am/pm specified
 5 invalid format type (n1 was not 0-15 or n2 was not 1-15)
 6 invalid format (wrong number of characters for conversion) or when input type is zero, the input
 field fit no recognizable format.

itype (optional) echoes the input type format when types 1-15 are used. When input type is 0, the format
 type assumed by TIMCON is reported here. itype=0 indicates that 1 of the keywords, noon or
 midnight was used.

Examples

The following examples using input type 0 and output type 11, 13, and 14.

 sample input output as output as t in secs returned
 using type 0 13 format 11 format 14 format itype

 13 01:00:00 pm 13:00:00 46800 1
 3 pm 03:00:00 pm 15:00:00 54000 2
 512 am 05:12:00 am 05:12:00 18720 4
 12:12 12:12:00 pm 12:12:00 43920 6
 345.59 03:45:59 am 03:45:59 13559 9
 noon 12:00:00 pm 12:00:00 43200 0

TIMDAT

This routine gets the time of day (by TSTIME) and date (by TSDATE). This routine handles the problem of
midnight occurring between the calls to TSDATE and TSTIME. It always returns a valid time and date pair.

Calling Sequence: CALL timdat(n,time,m,date1,[date2,]...)

Arguments:

n is the type of time wanted (as in TSTIME).

time is the output time of day.

m is the type of date wanted (as in TSDATE).

date1,date2 are the output dates.

Example:

 CHARACTER TIME*8,DATE*16
 CALL TIMDAT(5,TIME,1,DATE)

 Chapter 9. System Subroutines - TIMDAT 521

TIMOFF

A call to this subroutine can be used to display a message giving the computer time used (in service units)
since TIMON was called. If however, TIMON was not previously called, the time displayed by TIMOFF is
the time from the beginning of execution of the program.

Calling Sequence: CALL TIMOFF

TIMON

A call to this subroutine is used to reset the job time counter used in the TIMOFF subroutine.

Calling Sequence: CALL TIMON

TOLC

This subroutine translates a string of characters to lower case.

Calling Sequence: CALL TOLC(string,strlen)

Arguments:

string is a string of any length to be converted to upper case.

strlen is the length of string.

Example:

 Given that:

 STRING --> 'ABC123'
 STRLEN --> 6

 CALL TOLC(STRING,STRLEN)

 Returns:

 STRING --> 'abc123'
 STRLEN --> 6

TOUC

This subroutine translates a string of characters to upper case.

Calling Sequence: CALL TOUC(string,strlen)

Arguments:

string is a string of any length to be converted to upper case.

522 TOUC - MUSIC/SP User's Reference Guide

strlen is the length of string.

Example:

 Given that:

 STRING --> 'abc123'
 STRLEN --> 6

 CALL TOUC(STRING,STRLEN)

 Returns:

 STRING --> 'ABC123'
 STRLEN --> 6

TPCLSE

A call to this subroutine cancels the effect of a previous call to the TPOPEN subroutine. This subroutine is
for ASCII terminals only.

Calling Sequence: CALL TPCLSE

TPOPEN

This subroutine is for ASCII terminals only. When the print line exceeds the terminal line length, MUSIC
usually splits the line into two parts. This feature causes problems when users are directing the output to a
paper tape. A call to this subroutine suppresses this line splitting.

Calling Sequence: CALL TPOPEN

TRANSL

This routine modifies characters according to a 256-byte translation table. The machine instruction TR
(translate) is used.

Calling Sequence: CALL TRANSL(a,len,table)

Arguments:

a represents the characters to be modified.

len is the length in bytes. Len may have any value. If it is 0 or less, no action is taken.

table is the 256-byte translation table supplied by the caller. For each of the 256 possible values of a byte
 in the argument a the table must have a replacement byte.

 Chapter 9. System Subroutines - TRANSL 523

TRIN

This subroutine cancels the effect of a call to the NOTRIN subroutine. Normal terminal input translation is
resumed.

Calling Sequence: CALL TRIN

TSDATE

This subroutine returns the current date in one of several forms as specified by the first argument n. The date
is returned in the remaining argument(s) x, y... The calling sequence must contain the correct number of
arguments depending on the value of n: See also TIMDAT.

Calling Sequence: CALL TSDATE(n,x,y...)

Arguments:

n is a number from 1 to 14 specifying the format of the date.

 1 16-byte printable date: WED MAR 06, 1985
 2 8-byte U.S.A. format: mm/dd/yy for example 03/06/85
 3 8-byte date: ddmonyyb for example 06MAR85b (b represents a blank)
 4 x = integer year (e.g. 1985),
 y = integer day of year (e.g. 65)
 5 integer day of week, 1 to 7 (Sunday is 1, Monday is 2, etc.)
 6 x = integer month (e.g. 3),
 y = integer day of month (e.g. 6),
 z = integer year (e.g. 1985)
 7 8-byte European format: dd/mm/yy for example, 06/03/85
 8 8-byte sortable: yymmddbb for example 850306bb (b represents a blank)
 9 8-byte European, no slashes: ddmmyybb for example 060385bb (b represents a blank)
 10 4-byte packed decimal: 00yydddC for example hex 0055041C (for Mar.6/85)
 11 4-byte sortable binary: yymd for example hex 07C10306 (for Mar.6/1985)
 12 10-byte sortable: yyyy/mm/dd for example 1985/03/06
 13 8-byte sortable: yyyy/ddd for example 1985/065
 14 integer in file system date format: integer day+(integer year-1970)*366

x is the variable name where the date is returned.

y is the second variable name where the date is returned and must be specified if n is equal to 4 or 6.

z is the third variable name where the date is returned and must be specified if n is equal to 6.

TSTIME

This subroutine returns time of day or job execution time as specified by n. See also TIMDAT.

Calling Sequence: CALL TSTIME(n,arg)

524 TSTIME - MUSIC/SP User's Reference Guide

Arguments:

n is a number from 1 - 8 specifying the format or the time as follows:

 1 8-byte time of day in the form HH.MM.SS for example, 15.04.09
 2 integer time of day in seconds
 3 integer job execution time since the beginning of execution, in units of 1/100 service unit.
 4 Integer time of day in units of 1/300 seconds.
 5 8-byte time of day in the form HH:MM:SS for example 15:04:09
 6 11-byte time of day in the form HH:MM:SS.TH, where TH is hundredths of seconds, for exam-
 ple 15:04:09.73
 7 8-byte time-of-day clock, as a 64-bit unsigned integer, obtained by executing a Store Clock
 (STCK) instruction. Note that the time-of-day clock is the elapsed time since a fixed date in the
 past.
 8 Time-of-day clock, converted to number of microseconds by shifting right 12 bits, as an 8-byte
 REAL*8 normalized floating-point value. Obtained by a Store Clock (STCK) instruction.

arg is the variable name where the time is returned.

TSUSER

This subroutine returns information about the user as specified by the first argument n.

Calling Sequence: CALL TSUSER(n,arg)

 or

 CALL TSUSER(n,arga,argb) (for n=11 only)

Arguments:

n is a number from 1 to 15 indicating the type of information required.

 1 integer workstation type:
 0 batch
 1 2741,3767 EBCD code
 2 2741,3767,CMCST Correspondence code
 3 TTY, narrow carriage (72 characters or less)
 4 TTY, wide carriage (more than 72 characters)
 5 1050
 6 3270
 99 other
 2 First 8 characters of the user's userid. If the userid is longer than 8 characters, the 8th character
 is returned as plus sign (+) to indicate truncation. See also n=8, 10.
 3 4 character terminal number (always "01 ".) nn
 4 integer TCB number (session number)
 5 terminal primary line length (132 for batch)
 6 terminal line speed as preset by installation, in bits/sec (0 for batch)
 7 1 if terminal accepts 3270 data streams, 0 otherwise. For example, for PCWS, n=7 returns 1
 even though n=1 may return 4.
 8 16-character userid of the user. It ends in trailing blanks if the userid is less than 16 characters
 long.
 9 Length of the file ownership part of the userid (1 to 16). This is the length of the userid without
 the subcode, if any.

 Chapter 9. System Subroutines - TSUSER 525

 10 16-character file ownership id of the user. This is the userid without the subcode, if any.
 11 3270 screen size: number of rows is returned in arga (e.g. 24); number of columns is returned in
 argb (e.g. 80).
 12 4 bytes of workstation (terminal) information is returned in arg. The first 2 bytes are as set by
 call to Q3270 subroutine at sign-on, giving 3270 characteristics:
 1st byte: all 0 if batch or not 3270-capable.
 bit x'40': PCWS connected via an ASCII line.
 bit x'20': NET3270.
 bit x'10': 3270 using a protocol convertor (e.g. 7171).
 bit x'08': 16 colors.
 bit x'04': standard 7 colors (extended color).
 bit x'02': monochrome, or only the base 4 colors.
 2nd byte:
 bit x'80': blink (extended attribute) is supported.
 bit x'40': reverse video (extended attribute) supported.
 bit x'20': underline (extended attribute) is supported.
 bit x'08': reply mode: extended field mode supported.
 bit x'04': reply mode: character mode supported.
 bit x'02': workstation allows entry of DBCS SO/SI chars.
 3rd and 4th bytes: reserved.
 13 Integer national language number in effect.
 =1 English
 =2 French
 =3 Kanji (Japanese)
 =4 Portuguese
 =5 Spanish
 =6 German
 14 Integer national language display mode. Test result by looking at bits.
 = 1 if in double byte display mode (ex: Kanji)
 15 Integer userid type number.

arg is the variable name where the information is returned.

UUDEC

This subroutine converts text from UUENCODE form (4 bytes --> 3 bytes). This is the UUENCODE encod-
ing scheme used by the UNIX and DOS utility uuencode/uudecode. It encodes any 8-bit text to printable
characters, producing 4 output chars for each 3 input bytes. see the translate table in this routine for the 64
printable characters used.

This routine decodes the printable data, back to the original data. (This routine is re-entrant.)

See also: UUENC - encode; TBAS64 - encode to base 64 (mime); and FBAS64 - decode from base 64
(mime).

Calling Sequence: CALL UUDEC(intxt,inlen,outtxt,outlen,retcod,displ)

Arguments:

intxt input data (encoded as by uuencode utility). It is assumed to start on a quartet (group of 4
 bytes in the encoded text) boundary. Note: intxt is destroyed by this routine (tranlated in
 place), so the caller should pass a copy of the original data, if it is to be used again. intxt is
 destroyed only up to (not including) the first blank or invalid character or to the end of the
 last full input quartet.

526 UUDEC - MUSIC/SP User's Reference Guide

inlen length of input data. If 0 or less, this routine sets outlen=0, retcod=0, and displ=0 and no
 other action is taken.

outtxt area to receive output (decoded) data. It must be large enough to hold the output data.
 Maximum possible output is ((inlen+1)/4)*3 bytes, where / is integer divide i.e. discard the
 remainder.

outlen this routine sets outlen to the length of the output data. This is a multiple of 3. outlen is
 always the number of bytes stored into outtxt.

retcod,displ the routine sets these integer arguments to indicate various cases, errors, and ending condi-
 tions. retcod is a return code and displ is a displacement within intxt, usually indicating how
 many input characters have been processed. Scanning stops when a blank is found, or an
 invalid character is found; this we call the "scan end".
 1. if the scan end immediately follows a quartet, retcod=0 and displ=displacement to scan
 end i.e. 4*(number of quartets processed). outlen=3*(number of quartets processed).
 2. if scan end is within a quartet, retcod=number of of chars in last quartet before the scan
 end i.e. 1 to 3, and displ=displacement to end of the last complete quartet.
 outlen=3*(number of complete quartets processed). Only the first displ bytes of intxt
 are destroyed; the partial quartet at the end is intact, and can be concatenated with later
 data and passed to a subsequent call to this routine.
 3. if an invalid character is found, retcod=4 and displ=displacement to the bad character.
 any preceding complete quartets are processed, and outlen=3*(the number of them).

Notes:

1. intxt argument is modified by this routine. See description of intxt above.

2. this routine assumes the encoded text contains EBCDIC (not ASCII) printable characters. If the input is
 ASCII, the caller must convert the input to EBCDIC before calling this routine.

UUENC

This subroutine converts text to uuencode form (3 bytes --> 4 bytes). This is the encoding scheme used by
the UNIX and DOS utility UUENCODE. It encodes any 8-bit text to (ebcdic) printable characters, produc-
ing 4 output chars for each 3 input bytes. see the translate table in this routine for the 64 printable characters
used. (This routine is re-entrant.)

See also: UUDEC - decode; TBAS64 - encode to base 64 (mime); FBAS64 - decode from base 64 (mime).

Calling Sequence: CALL UUENC(intxt,inlen,outtxt,outlen)

Arguments:

intxt input data.

inlen length of input data. If 0 or less, outlen is set to 0 and no other action is taken. Note: if inlen
 is not a multiple of 3, the input data is considered to be extended at the end with 1 or 2
 binary 0 bytes (x'00'), so as to be a multiple of 3, and the original input length is not recorded
 in the encoded data.

outtxt area to receive output data. Size must be at least (n/3)*4 bytes, where n is inlen rounded up
 to a multiple of 3.

 Chapter 9. System Subroutines - UUENC 527

outlen this routine sets outlen to the length of the output data. It is always a multiple of 4.

VERALL

This routine performs a variation of the VERIFY routine. It verifies that all the characters of a string are one
of the group of characters specified by a reference character string. All non-reference characters located
will have their relative position in the string returned, as well as a count of all mismatches.

Calling Sequence: CALL VERALL(string,strlen,refstr,reflen,pos,numpos)

Arguments:

string is a character string of length strlen that is to be verified.

strlen is the length of string.

refstr is the group of character(s) that constitute the range of acceptable characters that can be
 found in string. This character string can be called the reference string and the characters
 reference characters.

reflen is the length of the refstr in the range of 1 to 256.

pos is an integer array where the relative character positions of all non-refstr characters are
 returned. pos should be dimensioned to the byte length of string, that is pos(strlen). If a
 character is detected in string, that is not one of the reference characters, its relative position
 is returned in pos (i).

numpos is an integer where the number of relative character positions of all non -refstr characters is
 returned.

Example:

 Given that:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789'
 REFLEN --> 10

 CALL VERALL(STRING,STRLEN,REFSTR,REFLEN,POS,NUMPOS)

 Returns:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789'
 REFLEN --> 10
 POS --> 1, 2, 5, 8, 0, 0, 0, 0
 NUMPOS --> 4

528 VERALL - MUSIC/SP User's Reference Guide

VERIFY

This routine verifies that all the characters of a string are one of the group of characters specified by a refer-
ence character string. If a non-reference character is located, its relative position in the string is returned.

Calling Sequence: CALL VERIFY(string,strlen,refstr,reflen,pos)

Arguments:

string is a character string of length strlen that is to be verified.

strlen is the length of the string, in the range of 1 to 256.

refstr is the group of character(s) that constitute the range of acceptable characters that can be
 found in string. This character string can be called the reference string and the characters
 reference characters.

reflen is the length of the refstr, in the range of 1 to 256.

pos is an integer returned that is set to 0 if all characters of string are also in the reference string
 refstr. If a character is detected in string, that is not one of the reference characters, its rela-
 tive position is returned in pos.

Example:

 Given that:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789b'
 REFLEN --> 11

 CALL VERIFY(STRING,STRLEN,REFSTR,REFLEN,POS)

 Returns:

 STRING --> 'bb12t45b'
 STRLEN --> 8
 REFSTR --> '0123456789b'
 REFLEN --> 11
 POS --> 5

WORD

This routine parses a string by isolating substrings (words) delimited by a specified character (usually a
blank). It returns the number of words or substrings found, as well as their positions and lengths.

Calling Sequence: CALL WORD(string,strlen,number,pos,lens,delim)

Arguments:

string is a character string to be parsed of length strlen.

 Chapter 9. System Subroutines - WORD 529

strlen is the length of the string. When strlen =0 no action is taken by WORD.

number is the number of words found in the string.

pos is an array where the relative positions of the words found in string are returned. The array
 dimension should be as large as the expected number of words to be found in string. For
 example, a string of length 80 can only have 40 individual words since the delimiters would
 occupy 40 bytes.

lens is an array where the relative lengths of the words found in string are returned. The array
 dimension should be as large as the expected number of words to be found in string. For
 example a string of length 80 can only have 40 individual words since the delimiters would
 occupy 40 bytes.

delim is a one byte string (usually a blank specified as ' ') which serves as the word delimiters.
 WORD scans string and reports, as words, the substrings separated by the delim characters.
 Consecutive multiple occurrences of the delim character are ignored.

Example:

 Given that:

 STRING --> 'Mary had a little lamb. '
 STRLEN --> 25
 DELIM --> ' '

 Note: POS and LEN are dimensioned to 12, for this example.

 CALL WORD(STRING,STRLEN,NUMBER,POS,LEN,DELIM)

 Returns:

 STRING --> 'Mary had a little lamb. '
 STRLEN --> 25
 NUMBER --> 5
 DELIM --> ' '
 POS --> 1 6 10 12 19
 LEN --> 4 3 1 6 5

XGCOFF

(Fortran G1 only) A call to this subroutine cancels the effect of a previous call to the XGCON subroutine.

Calling Sequence: CALL XGCOFF

XGCON

(Fortran G1 only) A call to this subroutine permits use of an extended form of G format conversion which
permits free format input. The extended form remains in effect until a subsequent call to XGCOFF is made.

In the extended form, the field width specified is used as a maximum field width. However, the field width
is considered smaller if the number ends before the specified field width. If no number is found within the

530 XGCON - MUSIC/SP User's Reference Guide

specified field width, then it is set to 0.

Calling Sequence: CALL XGCON

Example:

 This facility allows an input line to be scanned totally in free format or parts can be in fixed
 format as well, as in the following example.

 CALL XGCON
 1 READ(9,2)A,I
 2 FORMAT(2G80.0)

 The format statement is interpreted as meaning that the two numbers expected may appear
 anywhere on the data statement, as long as they are separated by at least one blank. Any
 number not found on the data statement is assumed to be zero.

X2C

This routine converts hexadecimal strings to character equivalents (EBCDIC).

Calling Sequence: CALL X2C(hexstr,hexlen,string,irc,badchr)

Arguments:

hexstr is a character string of length hexlen which has in it only hexadecimal digits 0-9 and A-F.
 These must be paired, e.g. F1F2F3.

hexlen is the length of the hexstr. This length must be an even integer.

string is the character string to be returned, in the range of 1 to 256. The string should be at least
 half the length of hexstr.

irc is the return code describing the conversion.
 irc=-1 the HEXSTR length was 0.
 irc=0 conversion was successful.
 irc=1 an illegal character was found in the string.
 irc=3 conversion not possible, odd number of hex digits were found.

 Note: When irc is not 0 string remains unchanged by X2C.

badchr a one byte variable where the bad character (characters not in the range A-F, 0-9) is returned
 when irc=1.

Example:

 Given that:

 HEXSTR --> 'C1C6F3F4F5F6F7F8F960'
 HEXLEN --> 10

 CALL X2C(HEXSTR,HEXLEN,STRING,IRC,BADCHR)

 Returns:

 Chapter 9. System Subroutines - X2C 531

 HEXSTR --> 'C1C6F3F4F5F6F7F8F960'
 HEXLEN --> 10
 STRING --> 'AF123456789/'
 IRC --> 0
 BADCHR --> 'b'

X2I

This routine converts a hexadecimal character string to a four byte integer value.

Calling Sequence: CALL X2I(hexstr,hexlen,i,irc,badchr)

Arguments:

hexstr is a character string of length hexlen which has in it only hexadecimal digits 0-9 and A-F.

hexlen is the length of the hexstr. This length must be an integer less than or equal to 8 bytes.

i is the integer to be returned.

irc is the return code describing the conversion.
 irc=-1 the HEXSTR length was 0.
 irc=0 conversion was successful.
 irc=1 an illegal character was found in the string.
 irc=2 conversion not possible, length of hexstr was greater than 8.

 Note: If irc is not 0, then: i is set to zero.

badchr a one byte variable where the bad character (characters not in the range A-F, 0-9) is returned
 when irc=1.

Example:

 Given that:

 HEXSTR --> 'E0E'
 HEXLEN --> 3

 CALL X2I(HEXSTR,HEXLEN,I,IRC,BADCHR)

 Returns:

 HEXSTR --> 'E0E'
 HEXLEN --> 3
 I --> 3598
 IRC --> 0
 BADCHR --> 'b'

ZERO

This subroutine sets bytes of main storage to zero. The user should use this routine to zero large sections of
storage (eg. arrays with more than 500 elements).

532 ZERO - MUSIC/SP User's Reference Guide

Calling Sequence: CALL ZERO(a,m {,n})

Arguments:

a is the starting location of the bytes in main storage.

m is the number of words to turn to zero. If m is less than 1 no action is taken.

n is the length of each word. If n is omitted, 4 is assumed so that the subroutine sets m full words of
 main storage to zero.

 Chapter 9. System Subroutines - ZERO 533

 Dynamic Access to Files
———————————————
FORTRAN programs on the MUSIC system can read and write files without having to predefine the file
names on /FILE statements. This dynamic style of access allows more program flexibility. For example, at
execution time a program can prompt the user to specify the name of a file to be read or written. Input/out-
put is done using the standard FORTRAN statements (READ, WRITE, REWIND, ENDFILE, etc.)

Dynamic access is controlled by four system subroutines: OPNFIL (open a file), CLSFIL (close a file),
SETINF (specify information about a new file to be created), and FILMSG (get error message text corre-
sponding to an error number). Some usage examples are given at the end of this article.

 OPNFIL Subroutine (Open a File)

This routine associates a file name with a FORTRAN unit number (1 to 15 for FORTRAN G1, or 1 to 99 for
VS FORTRAN. Both the file name and the unit number are specified by the user. Various option keywords
may also be specified, indicating a new or existing file, read or write access, etc. The system attempts to
open the file, and passes a return code back to the user. A zero return code indicates a successful open, and
the user may then do FORTRAN I/O operations on the unit number, just as if the unit had been defined by a
/FILE statement.

An 8-character MVS DDname (data definition name) can be specified instead of a unit number. In that case,
the DDname is added to the job's DDname table (if not already there) and it is associated with the SL file.
This allows programs running in OS simulation mode (such as PL/I, COBOL and VS ASSEMBLER
programs) to access files dynamically. OPNFIL gives error code 31 if it is unable to define the DDname
because the DDname table is full.

When a program running in OS simulation mode calls OPNFIL with a unit number, the corresponding
FORTRAN DDname (FTnnF001) is also defined, in addition to the unit number. This feature allows VS
FORTRAN programs to use OPNFIL. Refer to the section on VS FORTRAN for further information.

 CLSFIL Subroutine (Close a File)

The CLSFIL routine closes a unit number previously opened by OPNFIL. The system closes the corre-
sponding file, and the unit number becomes undefined. The unit may be redefined by a later call to OPNFIL.
CLSFIL gives a return code to the user. Zero indicates a successful close.

A 8-character MVS DDname can be specified instead of a unit number. This would be a DDname previ-
ously defined by a call to OPNFIL.

 SETINF Subroutine (Set Information for a New File)

When a new file is created by OPNFIL, the attributes of the file must be supplied. These include file size,
record length, record format, and access control (public, private, etc.) They are specified by calling SETINF
before calling OPNFIL. SETINF stores the information in a common block which is then available to
OPNFIL.

534 MUSIC/SP User's Reference Guide

 FILMSG Subroutine (Get Error Description)

When an open or close is unsuccessful, a nonzero return code indicates the reason for the error. The error
code is typically a 2-digit number. If the program wishes to display an error message at this point, descrip-
tive text corresponding to the error code can be obtained by calling FILMSG. Optionally, FILMSG can
display a message itself (including the unit number) and terminate the job.

 Calling Sequences

Some of the arguments may be omitted, as indicated in the descriptions below. Note that all numerical argu-
ments are of type INTEGER*4.

Calling Sequence: CALL OPNFIL(unit,retcod,'shortname ','options.')

 or

 CALL OPNFIL(unit,retcod,-1,'longname ','options.')

 or

 CALL OPNFIL(UNIT,retcod,TYPE)

Arguments:

unit FORTRAN unit number (1 to 99), or an 8-character DDname enclosed in single quotes. For
 FORTRAN G1, the unit number must be 1 to 15.

retcod Error number returned by the routine. Zero means successful open.

'shortname ' The name of the file to be opened. It may include the userid prefix (usrd:). A blank must
 follow the name, unless it is the maximum length (22 characters). Special names '&&TEMP
 ' (temporary new file) and '/INPUT ' (MUSIC Input File) may be used. If a temporary file is
 to be kept, use the RENAME or REPL option when closing it.

'longname' Same as shortname except that the maximum length of the file name is 64 characters (can
 include directory prefixes). The option "-1" must be present in the calling sequence before
 the longname.

'options.' (This argument is optional.) This is a character string containing option keywords. The
 keywords are separated by one or more blanks and the last one is followed by a period.
 They are described below. If this argument is omitted, 'OKOLD RDOK.' is assumed, i.e. an
 existing file is to be read.

TYPE A special unit identifier may be specified instead of a file name. The allowable values are:
 TYPE = 0 Undefined file.
 5 Input stream (card reader if batch).
 6 Printed or displayed output.
 7 Punched output.
 8 Dummy file (read gives EOF, writes ignored).
 9 Conversational reads.
 10 Special holding file (output).

Calling Sequence: CALL CLSFIL(unit,retcod,'options.')

 Chapter 9. System Subroutines 535

 or

 CALL CLSFIL(unit,retcod,'options.','newname ')

Arguments:

unit FORTRAN unit number (1 to 99), or an 8-character DDname enclosed in single quotes. For
 FORTRAN G1, the unit number must be 1 to 15.

retcod Error number returned by the routine. Zero means successful close.

'options.' (This argument is optional.) Keyword options, in the same format as for OPNFIL. The
 keywords for close are described below.

'newname ' This optional last argument is used only when the RENAME or REPL option is specified. It
 is the new name to be given to the file.

Calling Sequence: CALL SETINF(PRIMSP,SECSP,LRECL,RECFM,'options.')

Arguments:

PRIMSP Initial space to be allocated for the new file, in units of 1K = 1024 bytes. If the argument is
 omitted or 0, 32 is assumed.

SECSP Secondary space to be allocated whenever more space is needed in the file. It is specified
 either as an absolute amount (in units of 1K = 1024 bytes) or as -n, meaning n% of the exist-
 ing space. If the argument is omitted or 0, 50% is assumed.

LRECL Logical record length of the file, 0 to 32760. If omitted, 80 is assumed. Specify 0 if the
 record format is V or VC.

RECFM Record format, as a 2-character item:
 'FC' Fixed-length compressed (the default).
 'F ' Fixed-length uncompressed.
 'VC' Variable-length compressed.
 'V ' Variable-length uncompressed.
 'U ' Undefined.
 If the argument is omitted or 0, 'FC' is assumed.

'options.' Keywords defining the access control options for the file, in the same format as the options
 for OPNFIL. The keywords are described below. If omitted, 'PRIV.' (private file) is
 assumed, i.e. only the owner may read or write the file.

Calling Sequence: CALL FILMSG(errcod,buffer,length)

 or

 CALL FILMSG(errcod,unit)

Arguments:

errcod An error number returned by OPNFIL or CLSFIL.

buffer An array to receive the error description.

length The length of BUFFER, in bytes. A length of 70 or more is adequate, but any length can be

536 MUSIC/SP User's Reference Guide

 specified. Unused bytes are set to blanks by the routine.

unit If FILMSG is called with only two arguments, the second is assumed to be the unit number
 associated with the error. If errcod is nonzero, a message is displayed (containing the error
 number, unit number, and error description) and the job is terminated. If errcod is 0, no
 message is displayed and the job continues.

 Option Keywords for Open

OKOLD The file may already exist.

OKNEW A new file may be created. SETINF must be called to define the attributes of the new file.
 Note: at least one of OKOLD, OKNEW must be used.

RDOK Read operations will be allowed.

WROK Write operations will be allowed.

APPOK Append (adding to the end of the file) will be allowed. The file will be positioned to the end
 of existing data. WROK must also be used.

POSEND Position to the end of the file's data.

ENQSHR Force enqueue for shared control of the file. Normally shared control is used only when
 WROK is not specified.

ENQEXCL Force enqueue for exclusive control of the file.

 Option Keywords for Close

RLSE Release any unused space. This option is recommended if writes were done to the file, espe-
 cially when creating a new file.

RENAME Rename the file to the name specified in the 'newname' argument.

REPL Rename the file to the name specified in the 'newname' argument. This is similar to
 RENAME, except that if a file already exists with the new name, it is deleted.

DEL Delete the entire file.

TCLOSE Specifies that the CLOSE function is to be performed but that the file is to remain open for
 further requests. The current end of data pointer is updated in the file's directory. RLSE is
 the only other option that can be given when TCLOSE is used.

CTAG Set a new tag field when the file is closed.

Note: For RENAME and REPL, new access control options are used for the new file, and these should be
 specified by calling SETINF before calling CLSFIL. In this case, the first 4 arguments of SETINF
 may be specified as 0.

 Chapter 9. System Subroutines 537

 Keywords for SETINF Access Control Options

Access is defined for two classes of users: (1) an owner of the file (the user's userid matches the file's userid),
and (2) non-owners (all other users). The default is a private file, meaning that an owner has unrestricted
access while non-owners have no access at all. The suffix "(OWN)" indicates that the keyword applies to
access by an owner.

PUBL A publicly readable file. Non-owners may read the file but not modify it. Also, the file is
 placed in the common index (see COM below).

PRIV A private file (the default). Non-owners can neither read nor write the file.

SHR Non-owners may read the file.

COM The file is placed in the common index, so that non-owners can refer to it without having to
 include the file's userid in the file name.

RD Same as SHR.

NORD Non-owners may not read the file.

WR Non-owners may modify the file.

NOWR Non-owners may not modify the file.

XO The file is execute-only for non-owners. Execute-only means that the file may be executed
 as a program, but not read as data.

AO The only type of write access for non-owners is append. This means that non-owners may
 add data to the end of the file, but not overwrite existing data. This is useful for log files.

RD(OWN) Owners may read the file.

NORD(OWN) Owners may not read the file.

WR(OWN) Owners may modify the file.

NOWR(OWN) Owners may not modify the file.

XO(OWN) The file is execute-only for owners.

AO(OWN) The only type of write access for owners is append.

The following are assumed by default: NORD, NOWR, RD(OWN), WR(OWN). The specification 'PUBL.'
is equivalent to 'RD COM.'

 Common Blocks Used

Several named common blocks are used for communication among the calling program and the system
subroutines. For most applications, the user need not be aware of them.

/FILINF/ (20 bytes) This area contains information about a new file to be created (set by SETINF

538 MUSIC/SP User's Reference Guide

 subroutine), and also receives information when an existing file is opened.

/FILTAG/ (64 bytes) This is the 64-character tag field. To assign a tag to a new file, place the tag in
 this area before calling OPNFIL, but after calling SETINF. Any call to SETINF zeros this
 area. Also, when an existing file is opened, its tag is put here.

/FILEFP/ (10 bytes) End-of-file information is placed here when a file is opened.

/FILRGX/ (12 bytes) When OPNFIL or CLSFIL is called, the first 12 bytes of the system request argu-
 ment (after the request is issued) are placed here. The 10th byte has bit X'80' on whenever a
 new file is created. After a close with RENAME or REPL, this bit is off if an existing file
 was replaced.

 Error Codes and Descriptions

 1 END OF DATA SET ENCOUNTERED
 2 INCORRECT LENGTH
 10 INVALID REQ
 11 INVALID REQ PARAMETER
 12 FILE NAME INVALID
 19 INVALID ARGUMENTS IN CALL TO SERVICE SUBROUTINE
 20 TOO MANY OPEN FILES
 21 NOT YOUR LIBRARY
 22 NOT YOUR FILE
 23 VIOLATION OF WRITE RULE
 24 ATTEMPT TO READ BEYOND END OF WRITTEN INFO
 25 WRITE THEN READ SEQ INVALID
 26 YOUR USERID CANNOT CREATE FILES ACCESSIBLE BY OTHERS
 27 YOUR USERID CANNOT CREATE FILES IN THE COMMON INDEX
 30 FILE NOT FOUND
 31 DDNAME NOT FOUND
 (For a call to OPNFIL to define a DDname, error 31
 means there is no more room in the DDname table.)
 32 FILE ALREADY EXISTS
 33 FILE IN USE
 34 COMMON NAME USED BY SOMEONE ELSE
 35 UNIT NUMBER NOT DEFINED
 36 SUBDIRECTORY DOES NOT EXIST
 40 SPACE QUOTA EXCEEDED FOR THIS USERID
 41 SPACE QUOTA EXCEEDED FOR THIS FILE
 42 CANNOT ADD SPACE TO THIS FILE
 43 REQUESTED ACCESS OR OPERATION NOT ALLOWED
 44 REQ BEYOND EXTENT OF FILE
 45 FILE RECFM NOT DEFINED
 46 FILE CANNOT BE READ SEQUENTIALLY
 47 INSUFFICIENT SPACE FOR BUFFER ALLOC
 48 MIN RECORD LEN IS 80 FOR THIS FILE TYPE
 50 FILE NOT ONLINE
 51 NOT ENOUGH FREE DISK SPACE
 52 NOT ENOUGH FREE DISK SPACE (INDEX)
 60 RD I/O ERROR IN FILE
 61 WR I/O ERROR IN FILE
 62 RD I/O ERROR IN SYSTEM AREA
 63 WR I/O ERROR IN SYSTEM AREA

 Chapter 9. System Subroutines 539

 64 INDEX IN ERROR
 65 HEADER IN ERROR
 66 MAP INTEGRITY ERROR
 67 INDEX/HEADER MISMATCH
 70 SYSTEM FILE ERROR

 Examples

1. This example opens an existing file JULY.DATA as unit 1, reads it, and closes it.

 CALL OPNFIL(1,K,'JULY.DATA ')
 CALL FILMSG(K,1)
 READ(1,... (read the file)
 ...
 CALL CLSFIL(1,K)

2. This sample program opens a new temporary file as unit 12, with a size of 100K, and writes some data
 to it. It then closes the file, renaming it to a file name supplied by the user. Any unused space is
 released. The new file is made public.

 LOGICAL*1 NAME(22)
 INTEGER UNIT/12/
 CALL SETINF(100)
 CALL OPNFIL(UNIT,K,'&&TEMP ','OKNEW WROK.')
 CALL FILMSG(K,UNIT)
 WRITE(UNIT,10)
 10 FORMAT('DATA1...'/'DATA2...')
 WRITE(6,20)
 20 FORMAT(' ENTER NAME OF NEW FILE')
 READ(9,30) NAME
 30 FORMAT(22A1)
 CALL SETINF(0,0,0,0,'PUBL.')
 CALL CLSFIL(UNIT,K,'RLSE RENAME.',NAME)
 CALL FILMSG(K,UNIT)
 WRITE(6,40)
 40 FORMAT(' SAVED')
 STOP
 END

540 MUSIC/SP User's Reference Guide

 QFOPEN, QFCLOS, QFREAD, QFBKRD, QFRBA, QFREW

These routines allow quick record-by-record read of a sequential file. Disk reads are done by UIO request,
several blocks at a time. QFREAD deblocks and decompresses the logical records itself, thus avoiding the
overhead of SVC and MFIO processing for each logical record. The file's record format must not be U.

QFBKRD reads the previous logical record. Currently, only supported for RECFM=FC,VC files.

Note: These routines are re-entrant (read-only)

QFOPEN - Open a file and define buffer area

QFOPEN opens the file (by name or ddname, etc.). The caller provides a work area, where the routines store
control information and UIO buffers. The same work area must be used in all subsequent calls for that file,
until the file is closed by QFCLOS. The caller should not change the contents of the work area between
calls. Each concurrently open file needs its own work area.

Calling Sequence: CALL QFOPEN(retcod,wkarea,wklen,shortname,options,
 phys,info,eofp,tag,uinf,xinf)

Calling Sequence: CALL QFOPEN(retcod,wkarea,wklen,-1,longname,options,
 phys,info,eofp,tag,uinf,xinf)

The "options" argument is optional (can be omitted) unless phys, etc. are present. phys,info,... are optional
and are the areas to be used in place of the common block areas /QFPHYS/, etc. All these arguments must
be present if the routine is part of a re-entrant module, to avoid storing into the common blocks (which are
part of the module). The arguments are described in detail below.

QFCLOS - Close a file and realease buffer area

Calling Sequence: CALL QFCLOS(retcod,wkarea)

QFREAD - Read next logical record

Calling Sequence: CALL QFREAD(retcod,wkarea,recbuf,lenbuf)

QFBKRD - Read previous logical record

Calling Sequence: CALL QFBKRD(retcod,wkarea,recbuf,lenbuf)

Currently only supports RECFM=FC,VC files. Give EOF (RC=1) if attempt to read backwards too far. You
can use the QFRBA to set a very high number for the RBA and the next call to QFBKRD will read the last
record in the file.

QFRBA - Set RBA (Relative Byte Address) for next read

Calling Sequence: CALL QFRBA(retcod,wkarea,rba)

 Chapter 9. System Subroutines 541

QFREW - Rewind the file

Calling Sequence: CALL QFREW(retcod,wkarea)

Equivalent to call QFRBA(retcod,wkarea,512 or 514).

Arguments

retcod MFIO return code. These routines may set return code 19 ("invalid arguments in call to
 service subroutine") for invalid calls, e.g. work area too small or not initialized by open.

wkarea The work area for the file. See QFWRK DSECT. Contains control information followed by
 1 or more 512-byte buffers. Must be on a fullword or doubleword boundary. Minimum size
 is about 700 bytes. Recommended size (for maximum speed) is about 10k+200. Maximum
 size is (2**24)-1. A very big work area should be avoided, unless the entire file will fit into
 the buffer area, because each I/O tries to read the greatest number of buffers possible and
 this could cause excessive I/O for random access in a big file.

wklen Length of the work area, in bytes.

shortname
or
-1,longname File name (or ddname, etc.) for the open. Maximum length is 22 for a short name and 64 for
 a long name. If an actual file name is provided and it is shorter than the maximum, it must
 be followed by a blank.

 If the "LU" option is used (see below), the file name is actually a 4-byte logical unit number.

 Special provision for using a file that is already open: If the options argument contains the
 keyword "IU", then the name argument is a 4-byte internal unit number (IU), and the file is
 assumed to be already open. Other option keywords are ignored if present. At the time of
 the call to QFOPEN, common blocks /QFINFO/ and /QFEIOP/ (or their replacements) must
 contain data as set by the original open. For the IU option, QFOPEN does not do an open,
 so it does not fill in any common blocks.

options (Optional) a character string of the form 'keyword keyword ... keyword.' The keywords are
 separated by blanks and the last one is followed by a period. String '.' specifies no option
 keywords. The keywords specify MFIO options for the open:

 DDNAME
 DDORDS
 MEMBER
 LU
 NODATE
 ENQEXCL
 PGMP
 IU (see above)

OPEN, OKOLD, RDOK
 (these are allowed but ignored; this gives compatibility with MFACT) In all cases, the open
 uses MFIO options okold and rdok.

phys,info,eofp,tag,uinf,xinf
 These optional arguments specify replacement areas for the common blocks
 /QFPHYS/,/QFINFO/,etc. The phys argument must be 8 bytes long, the info argument 20

542 MUSIC/SP User's Reference Guide

 bytes long, etc. When an argument is present, it is used instead of the corresponding
 common block area. This is useful for cobol programs (which cannot access common
 blocks) and for a re-entrant module (where the common blocks are part of the module and
 must not be used).

recbuf Buffer to receive the logical record. Truncation or blank padding occurs if needed.

lenbuf The length of the caller logical record buffer (recbuf). it may be any length, including zero.

rba The MFIO RBA (Relative Byte Address) of the next record to be read. use of qfrba is
 optional.

Common Blocks Defined:

 /QFINFO/ (20 bytes) infout from the open.
 /QFTAG/ (64 bytes) tag from the open.
 /QFUINF/ (46 bytes) uinfo from the open.
 /QFXINF/ (40 bytes) xinfo from the open.
 /QFEOFP/ (10 bytes) eofpt from the open.
 /QFPHYS/ (8 bytes) phys set after each call to QFREAD.

Note: If QFOPEN provides a replacement area for a common block, that area is used instead, and the
 common block is not modified.

 Chapter 9. System Subroutines 543

 ITS Subroutines

MUSIC's Indexed Text Search (ITS) facility provides an efficient method of locating words in large docu-
ments. The ITSRET utility provides a way to locate and display the results of a search. The subroutines
described in this section provide an alternate to ITSRET. The subroutines allow you to write programs that
call the search routines and check the results directly.

These routines require a work area. This work area can be obtained dynamically by a call to ITSFID or a
work area can be supplied by a call to ITSFIW.

The search routines require access to an index data set built by the ITSBLD or ITSBLD2 utility. The calling
sequences allow for multiple index and text data sets, however, currently only one "search set" is supported.

ITSFID

This subroutine initializes using dynamic (Getmained) storage.

Calling Sequence: CALL ITSFID(rc,mhits,nss)

Arguments:

rc 4 bytes are returned:
 =0 if ok
 =1 if not enough storage available
 =2 number of search sets is invalid

mhits (4 bytes) is the maximum number of hits to handle. This routine does a Getmain for the work area.
 Intermediate results also use this area so make it quite large. Typically 2,000 or 4,000. Each item
 needs 24 bytes. So MHITS=2,000 needs 48,000 bytes.

nss is the maximum number of search sets (4 bytes). Should be = 1.

ITSFIW

This subroutine initializes using caller's work area.

Approximate amount needed is about 6,000 for fixed work space that supports 1 search set. Add to this 24
bytes per hit wanted. The fixed work space may increase in future to 10,000 or more.

Calling Sequence: CALL ITSFIW(rc,lhits,nss,work,lwork,mhits)

Arguments:

rc 4 bytes are returned:
 =0 if ok
 =1 if not enough storage available
 =2 number of search sets is invalid
 =3 Workarea not on double word boundary.

lhits is the limit to number of hits to handle (4 bytes). May not be able to do this amount due to size of
 input work area. If number set to -1, then take as many as will fit in area.

nss is the maximum number of search sets (4 bytes). Should be = 1.

544 MUSIC/SP User's Reference Guide

work is the input work area location (variable length). Must be on double word boundary.

lwork is the length of work area in bytes (4 bytes).

mhits 4 bytes are returned for the number of hits that will be done. It will be the maximum number that fits
 in area or number as limited by lhits.

ITSFOP

This subroutine opens a search set.

Calling Sequence: CALL ITSFOP(rc,ss,fnidx,fntext,debidx,debtext,endmark,endml)

Arguments:

rc 4 bytes are returned:
 =0 If ok
 =1 If Search Set number invalid or in use.
 =2 If Index data set not created by right version of ITSBLD.
 =3 Problem opening index component.
 MFIO error code 256 added to return code.
 =4 Problem opening text component.
 MFIO error code 256 added to return code.
 =5 Problem reading index component.
 MFIO error code 256 added to return code.

ss is the search set number (4 bytes). Must be = 1.

fnidx is the 64 character file name of the index, or is the 1 word deb number (format used if
 already opened).

fntext is the 64 character file name of the text, or is the 1 word deb number. Format used if:
 a) file already open by caller
 b) =0 if text file will not be used by these subroutines.

debidx is the 1 word deb number of the index file returned after open.

debtext is the 1 word deb number of the text file returned after open.

endmark is the 8 character item ending string used on this search set (returned).

endml is the 4 byte count of the ending marker (returned).

ITSFSS

This subroutine searches for a character string.

Calling Sequence: CALL ITSFSS(rc,sstr,lsstr,nhits)

Arguments:

rc 4 bytes are returned:
 =0 OK, something found.
 =1 No hits found. There is further information in 3rd byte of RC.

 Chapter 9. System Subroutines 545

 1 Only stop words looked for
 2 Hits found but after boolean logic nothing left
 3 Not even intermediate hits found
 =2 Too many items found. Some hits missing.
 =3 Problems with search string. There is further information in 3rd byte of RC.
 1 Search string all blanks
 2 Search word greater than maximum length (of 64)
 3 Search string has quotes, periods
 or other special chars around them.
 4 Syntax errors
 =4 Input search string length too long.
 =5 Problem reading index component. MFIO error code 256 added to return code.

sstr is the search string.

lsstr is the length of search string (maximum is 256).

nhits is the number of hits found (returned).

ITSFOR

This subroutine re-orders the matches of the last search. resulting list.

Calling Sequence: CALL ITSFOR(rc,so)

Arguments:

rc 4 bytes are returned:
 =0 if ok
 =1 invalid sort order request

so is the sort order combination of the file order and weight order wanted. Add the following options to
 give the sort order.
 0 order in file (default if ORDER was not called after last search).
 1 reverse order of file (last found item will be first).
 2 weighted order (highest weight first).
 4 reverse weighted order (highest weight last).

ITSFRE

This subroutine retrieves results.

Calling Sequence: CALL ITSFRE(rc,hn,buff,nhits,layout,txtl,nent)

Arguments:

rc 4 bytes are returned:
 =0 OK
 =1 Starting hit number too large.
 =1 I/O error reading from text component.
 MFIO error code 256 added to return code.
 (Can also include end-of-file.)
 =2 Problem opening text component.
 (Delayed open option used.)

546 MUSIC/SP User's Reference Guide

 MFIO error code 256 added to return code.

hn is the hit number to start with. First one is number 1.

buff is the buffer to return results.

nhits is the number of hits wanted.

layout is the layout of each return item, made up of the following optional fields. Each field will be
 length 4 if selected and will be in the following order:

 Search set number
 RBA
 Weight
 One line of text from text file
 Length of text line

 Calculate a number made up of the sum of the following wanted.

 1 Return search set number
 2 Return RBA
 4 Return weight
 8 Return length of text string. This length is obtained from the file system and may be
 greater than the number in txtl. This option should not be selected if txtl=0.

txtl is the maximum length of text from the text file to be read. If 0, nothing will be read. If
 non-zero, then use this length to read 1 logical record from the text file starting at the RBA.
 If the record is less than this length pad with blanks only if return length field is not given.

nent is the number of entries returned.

ITSFCL

This subroutine closes the search.

If close all request, then storage is freed and a call to ITSFID or ITSFIW will be required if more searching
wanted.

Calling Sequence: CALL ITSFCL(rc,ss)

Arguments:

rc 4 bytes are returned:
 =0 if ok

ss is the search set number to close or =0 for all. If search set number given as negative number then
 just remove search set from list but do not close it.

Sample Program - ITS Subroutines

 /LOAD VSFORT
 C SAMPLE PROGRAM SHOWING THE USE OF SOME OF THE ITS SUBROUTINES

 C (REAL PROGRAMS SHOULD CHECK RETURN CODES AFTER ALL THE SUBROUTINE

 Chapter 9. System Subroutines 547

 C CALLS)

 IMPLICIT INTEGER (A-Z)
 C VARIABLES TO HOLD FILE NAMES
 CHARACTER *64 FNIDX,FNDAT
 C VARIABLE TO HOLD ENDING STRING
 CHARACTER *8 ENDM
 C VARIABLE TO HOLD SEARCH STRING
 CHARACTER *80 SSTR
 C VARIABLE TO HOLD TEXT LINE FROM FILE
 CHARACTER * 80 BUFFER

 C -- INITIALIZE USING DYNAMIC STORAGE AREA AND ALLOW FOR 2000 HITS.
 CALL ITSFID(RC,2000,1)
 WRITE(6,100)MHITS
 100 FORMAT(' INITIALIATION CALL. MHITS=',I6)

 C -- OPEN THE SEARCH SET
 C SPECIFY FILE NAMES FOR WORD INDEX AND DATA COMPONENT
 FNIDX='$MAN:UR.WIDX'
 FNDAT='$MAN:UR.TOTAL'
 FLGS=0
 CALL ITSFOP(RC,1,FNIDX,FNDAT,DEBIDX,DEBDAT,FLGS,ENDM,ENDML)
 WRITE(6,110)DEBIDX, DEBDAT,ENDM,ENDML
 110 FORMAT(' OPEN SS. DEBNUM=',2I4,' ENDMARK=',A,' L=',I2)

 C -- DO A SEARCH. (SEARCH STRING GIVEN IN VARIABLE SSTR)
 SSTR='SENDFILE'
 LSSTR=80
 CALL ITSFSS(RC,SSTR,LSSTR,NHITS)
 WRITE(6,120)NHITS
 120 FORMAT(' SEARCH FOUND', I5, ' HITS')

 C -- RETURN THE FIRST LINE OF EACH SECTION THAT HAD A MATCH.
 C (TO READ MORE OF SECTION, ASK FOR RBA AND USE QFREAD OR MFIO
 C SUBROUTINES.)

 DO 40 HN=1,NHITS
 LAYOUT=0
 CALL ITSFRE(RC,HN,BUFFER,1,LAYOUT,80,NENT)
 WRITE(6,140)BUFFER
 140 FORMAT(1X,1A80)
 40 CONTINUE

 CALL EXIT
 END

548 MUSIC/SP User's Reference Guide

 Chapter 9. System Subroutines 549

