RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

structured programming, control flow, programming

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

e statement grouping

e if-else and switch for decision-making

e while, for, do, and repeat-until for looping

e break and next for controlling loop exits
and some *‘ syntactic sugar’’:

e freeform input (multiple statements/line, automatic continuation)

e unobtrusive comment convention

e trandation of >, >=, etc., into .GT., .GE., €tc.
e return(expression) statement for functions

e define statement for symbolic parameters

e include statement for including source files

Ratfor isimplemented as a preprocessor which trandlates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read, and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other environments. Ratfor is
written in itself in thisway, so it is also portable; versions of Ratfor are now running on at least two dozen
different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple-

mentation, and user experience.

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in, yet there
are many occasions when they are forced to use
it. For example, Fortran is often the only
language thoroughly supported on the local com-
puter. Indeed, it isthe closest thing to a universal
programming language currently available: with
care it is possible to write large, truly portable
Fortran programg[1]. Finally, Fortran is often the

most ‘‘efficient’” language available, particularly
for programs requiring much computation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
— conditional branches and loops — which
express the logic of the program. The conditional
statements in Fortran are primitive. The Arith-
metic IF forces the user into at least two statement
numbers and two (implied) coTO's; it leads to
unintelligible code, and is eschewed by good pro-

This paper is a revised and expanded version of oe published in Software—Practice and Experience, October 1975. The
Ratfor described hereis the one in use on unix and Gcos at Bell Laboratories, Murray Hill, N. J.

pPS2:8-2

grammers. The Logical IF is better, in that the
test part can be stated clearly, but hopelessly res-
trictive because the statement that follows the IF
can only be one Fortran statement (with some
further restrictions!). And of course there can be
no ELSE part to a Fortran IF: there is no way to
specify an alternative action if the IF is not
satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It isfine for
“1toNinstepsof 1 (or 2or..)", but thereisno
direct way to go backwards, or even (in ANSI
Fortran[2]) to go from 1 to N-1. And of course
the DO is useless if one's problem doesn’'t map
into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand, and thus hard to
debug and modify.

When one is faced with an unpleasant
language, a useful technique is to define a new
language that overcomes the deficiencies, and to
trandate it into the unpleasant one with a prepro-
cessor. This is the approach taken with Ratfor.
(The preprocessor idea is of course not new, and
preprocessors for Fortran are especially popular
today. A recent listing [3] of preprocessors
shows more than 50, of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of For-
tran (universality, portability, efficiency) while
hiding the worst Fortran inadequacies. The
language is Fortran except for two aspects. Firt,
since control flow is central to any program,
regardless of the specific application, the primary
task of Ratfor is to conceal this part of Fortran
from the user, by providing decent control flow
structures. These structures are sufficient and
comfortable for structured programming in the
narrow sense of programming without GOTO's.
Second, since the preprocessor must examine an
entire program to translate the control structure, it
is possible at the same time to clean up many of
the ‘‘cosmetic’’ deficiencies of Fortran, and thus
provide a language which is easier and more
pleasant to read and write.

Beyond these two aspects — control flow
and cosmetics — Ratfor does nothing about the

RATFOR — A Preprocessor for a Rational Fortran

host of other weaknesses of Fortran. Although it
would be straightforward to extend it to provide
character dtrings, for example, they are not
needed by everyone, and of course the preproces-
sor would be harder to implement. Throughout,
the design principle which has determined what
should be in Ratfor and what should not has been
Ratfor doesn’t know any Fortran. Any language
feature which would require that Ratfor realy
understand Fortran has been omitted. We will
return to this point in the section on implementa-
tion.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con-
structs, rather than to throw in everything that has
ever been thought useful by someone.

The rest of this section contains an informal
description of the Ratfor language. The control
flow aspects will be quite familiar to readers used
to languages like Algol, PL/I, Pascal, etc., and the
cosmetic changes are equally straightforward.
We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state-
ments together, short of making them into a sub-
routine. The standard construction *‘if a condi-
tion istrue, do thisgroup of things,’” for example,

if (x >100)
{ call error("x>100"); err = 1;
return }

cannot be written directly in Fortran. Instead a
programmer is forced to trandlate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

if (x .le. 100) goto 10
call error(5hx>100)
er=1
return
10

When the program doesn’t work, or when it must
be modified, this must be translated back into a
clearer form before one can be sure what it does.

Ratfor eliminates this error-prone and
confusing back-and-forth trandlation; the first
form is the way the computation is written in Rat-
for. A group of statements can be treated as a

RATFOR — A Preprocessor for a Rational Fortran

unit by enclosing theminthe braces{ and}. This
is true throughout the language: wherever asingle
Ratfor statement can be used, there can be severa
enclosed in braces. (Braces seem clearer and less
obtrusive than begin and end or do and end, and
of course do and end already have Fortran mean-
ings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The char-
acter *'>" is clearer than .61, so Ratfor
trandates it appropriately, along with severa
other similar shorthands. Although many Fortran
compilers permit character strings in quotes (like
"x>100"), quotes are not allowed in ANSI Fortran,
so Ratfor converts it into the right number of H’s:
computers count better than people do.

Ratfor is a free-form language: statements
may appear anywhere on aline, and several may
appear on one line if they are separated by semi-
colons. The example above could aso be written
as

if (x>100) {
call error("x>100")
er=1
return

}

In this case, no semicolon is needed at the end of
each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of coursg, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y<=0.0& z<=0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on the first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con-
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par-
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The‘‘else’’ Clause

Ratfor provides an else statement to handle
the construction ‘‘if a condition is true, do this
thing, otherwise do that thing.”’

pPS2:8-3

if (a<=D)
{ sw=0; write(6,1) a, b}
ese
{ sw=1; write(6, 1) b, a}
This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is circu-
itous indeed:

if (a.gt. b) goto 10

sw=0
write(6, 1) a, b
goto 20
10 sw=1
write(6, 1) b, a
20

This is a mechanical trandation; shorter forms
exist, as they do for many similar situations. But
al trandations suffer from the same problem:
since they are trandations, they are less clear and
understandable than code that is not a translation.
To understand the Fortran version, one must scan
the entire program to make sure that no other
statement branches to statements 10 or 20 before
one knows that indeed this is an if-else construc-
tion. With the Ratfor version, there is no question
about how one gets to the parts of the statement.
The if-else is a single unit, which can be read,
understood, and ignored if not relevant. The pro-
gram says what it means.

As before, if the statement following an if
or an else is a single statement, no braces are
needed:

if (a<=h)
sw=0
else
sw=1

The syntax of theif statement is

if (legal Fortran condition)
Ratfor statement
else
Ratfor statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logica IF. Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ratfor statement is
any Ratfor or Fortran statement, or any collection
of them in braces.

pPS2:8-4

Nested if’'s

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to -1 if x is less than
zero, to +1 if x is greater than 100, and to O other-
wise. Then in Ratfor, we write

if (x<0)
f=-1
elseif (x > 100)
f=+1
else
f=0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any version
written in straight Fortran will necessarily be
indirect because Fortran does not let you say what
you mean. And as aways, clever shortcuts may
turn out to be too clever to understand a year
from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In genera
the structure

if (...)

elseif (...)

elseif (...)

else

provides a way to specify the choice of exactly
one of several aternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases; in more general situations,
we have to make do with spare parts.) The tests
are laid out in sequence, and each oneis followed
by the code associated with it. Read down the list
of decisions until one is found that is satisfied.
The code associated with this condition is exe-
cuted, and then the entire structure is finished.
The trailing else part handles the *‘ default’” case,
where none of the other conditions apply. If there
is no default action, thisfinal else part is omitted:

RATFOR — A Preprocessor for a Rational Fortran

if (x<0)
x=0
eseif (x > 100)
X =100

if-else ambiguity
There is one thing to notice about compli-

cated structures involving nested if's and else’s.
Consider

if (x>0)
if (y>0)
write(6, 1) X, y
else
write(6, 2) y

There are two if’s and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else’ed if. Thus in this case,
the else goes with the inner if, as we have indi-
cated by the indentation.

It isawise practice to resolve such cases by
explicit braces, just to make your intent clear. In
the case above, we would write

if (x>0){
if (y>0)
write(6, 1) X,y
else
write(6, 2) y
}

which does not change the meaning, but leaves no
doubt in the reader’s mind. If we want the other
association, we must write

if (x>0){
if (y>0)
write(6, 1) X, y
}
else
write(6, 2) y

The‘‘switch’’ Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression. The
syntax is

RATFOR — A Preprocessor for a Rational Fortran

switch (expression) {

caseexprl:
statements

case expr2, expr3 :
statements

default:
statements

}

Each case is followed by a list of comma-
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl, expr2, and so on in turn until
one matches, at which time the statements follow-
ing that case are executed. If no cases match
expression, and there is a default section, the
statements with it are done; if there is no default,
nothing is done. In all situations, as soon as some
block of statements is executed, the entire switch
is exited immediately. (Readers familiar with
C[4] should beware that this behavior is not the
same as the C switch.)

The''do’’ Statement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it uses
no statement number. The statement number,
after all, serves only to mark the end of the Do,
and this can be done just as easily with braces.
Thus

doi=1,n{
x(i) = 0.0
y(i) =0.0
z(i)=0.0

}

isthe same as

dol1l0i=1,n
x(i)=0.0
y(i) =0.0
z(i)=0.0

10 continue
The syntax is:

do legal-Fortran-DO-text
Ratfor statement

The part that follows the keyword do has to be
something that can legally go into a Fortran bo
statement. Thus if a local version of Fortran
allows Do limits to be expressions (which is not
currently permitted in ANSI Fortran), they can be

PS2:8-5

used in aRatfor do.

The Ratfor statement part will often be
enclosed in braces, but as with the if, a single
statement need not have braces around it. This
code sets an array to zero:

doi=1,n
x(i)=0.0
Slightly more complicated,
doi=1,n
doj=1,n
m(i,j)=0
sets the entire array m to zero, and
doi=1,n
doj=1,n
if (i <j)
m(i,j)=-1
elseif (i ==}j)
m(i,j)=0
else
m(i, j) = +1

sets the upper triangle of m to —1, the diagonal to
zero, and the lower triangle to +1. (The operator
==is ‘‘equas’, that is, ‘**.EQ."".) In each caseg,
the statement that follows the do is logicaly a
single statement, even though complicated, and
thus needs no braces.

““break’’ and ‘‘next’’

Ratfor provides a statement for leaving a
loop early, and one for beginning the next itera-
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the loop,
so it causes the next iteration to be done. For
example, this code skips over negative values in
an array:

doi=1,n{
if (x(i) <0.0)
next
process positive element

}

break and next aso work in the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

PS2:8-6

break 2

exits from two levels of enclosing loops, and
break 1isequivalent to break. next 2 iterates the
second enclosing loop. (Redlistically, multi-level
break’sand next’s are not likely to be much used
because they lead to code that is hard to under-
stand and somewhat risky to change.)

The‘‘while'’ Statement

One of the problems with the Fortran bo
statement is that it generally insists upon being
done once, regardless of its limits. If a loop
begins

DOI=21

this will typically be done once with | set to 2,
even though common sense would suggest that
perhaps it shouldn’'t be. Of course a Ratfor do
can easily be preceded by atest

if (j <= k)
doi=j,k {

}

but this has to be a conscious act, and is often
overlooked by programmers.

A more serious problem with the DO state-
ment is that it encourages that a program be writ-
ten in terms of an arithmetic progression with
small positive steps, even though that may not be
the best way to write it. If code has to be con-
torted to fit the requirements imposed by the For-
tran DO, it is that much harder to write and under-
stand.

To overcome these difficulties, Ratfor pro-
vides a while statement, which is simply a loop:
“*while some condition is true, repeat this group
of statements”’. It has no preconceptions about
why one is looping. For example, this routine to
compute sin(x) by the Maclaurin series combines
two termination criteria.

RATFOR — A Preprocessor for a Rational Fortran

real function sin(x, €)
returns sin(x) to accuracy e, by
#8in(x) = x — x[03/3! + x[D5/5! - ...

sin=x
term =x

i=3

while (abs(term)>e & i<100) {
term = —term Ox[ID2 / float(i[{i—1))
sin=sin +term
i=i+2

}

return
end

Notice that if the routine is entered with
term already smaller than e, the loop will be done
zero times, that is, no attempt will be made to
compute x[M3 and thus a potential underflow is
avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears — the code works at one of its boun-
daries. (The test i<100 is the other boundary —
making sure the routine stops after some max-
imum number of iterations.)

Asan aside, a sharp character *‘#" inaline
marks the beginning of a comment; the rest of the
line is comment. Comments and code can co-
exist on the same line — one can make margina
remarks, which is not possible with Fortran's *‘C
in column 1" convention. Blank lines are also
permitted anywhere (they are not in Fortran); they
should be used to emphasize the natura divisions
of a program.

The syntax of the while statement is

while (legal Fortran condition)
Ratfor statement

As with the if, legal Fortran condition is some-
thing that can go into a Fortran Logical IF, and
Ratfor statement is a single statement, which may
be multiple statementsin braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a function
value and in its argument. Then aloop to find the
first non-blank character isjust

while (nextch(ich) == iblank)

RATFOR — A Preprocessor for a Rational Fortran

A semicolon by itself isanull statement, whichis
necessary here to mark the end of the while; if it
were not present, the while would control the
next statement. When the loop is broken, ich
contains the first non-blank. Of course the same
code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com-
pilers) believe thislineisillegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The‘‘for’’ Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop-
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali-
zation and increment steps as part of the state-
ment. For example, aDo loop isjust

for(i=1;i<=n;i=i+1)..
Thisisequivaent to

i=1
while (i <= n) {

i=i+1
}
The initialization and increment of i have been

moved into the for statement, making it easier to
see at aglance what controls the loop.

The for and while versions have the advan-
tage that they will be done zero timesif n is less
than 1; thisis not true of the do.

The loop of the sine routine in the previous
section can be re-written with afor as

for (i=3; abs(term) > e & i < 100;
i=i+2) {
term = —term Ox[02 / float(i[{i—1))
sn=sn+term

The syntax of the for statement is

for (init ; condition ; increment)
Ratfor statement

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before the
test. condition is again anything that islegal in a

pPS2:8-7

logical IF. Any of init, condition, and increment
may be omitted, although the semicolons must
aways be present. A non-existent condition is
treated as aways true, so for(;;) is an indefinite
repeat. (But see the repeat-until in the next sec-
tion.)

The for statement is particularly useful for
backward loops, chaining along lists, loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF's and GOTO's.
For example, here is a backwards Do loop to find
the last non-blank character on a card:

for(1=80;i>0;i=i-1)
if (card(i) != blank)
break
(**!="" isthe same as **.NE.”’). The code scans the

columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken. (break
and next work in for’s and whil€'s just as in
do’s). If i reaches zero, the card is al blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for-
ward, and we must explicitly set up proper condi-
tions when we fall out of the loop. (Forgetting
thisisacommon error.) Thus:

DO 10J=1, 80
1=81-J
IF (CARD(I) .NE. BLANK) GO TO 11
10 CONTINUE
1=0
11

The version that uses the for handles the termina-
tion condition properly for free; i is zero when we
fall out of the for loop.

The increment in afor need not be an arith-
metic progression; the following program walks
along alist (stored in an integer array ptr) until a
zero pointer is found, adding up elements from a
parallel array of values:

sum=0.0
for (i =first; i > 0; i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of aloop
instead of the bottom eliminates a potential boun-
dary error.

PS2:8-8

The*‘repeat-until’’ statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This serviceis
provided by the repeat-until:

repeat
Ratfor statement
until (legal Fortran condition)

The Ratfor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it isfalse, another passis made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed fact[8], the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part of
do, while and repeat-until, and to the increment
step of afor.

“return’’ Statement

The standard Fortran mechanism for return-
ing a value from a function uses the name of the
function as a variable which can be assigned to;
the last value stored in it is the function value
upon return. For example, here is a routine equal
which returns 1 if two arrays are identical, and
zevo if they differ. The array ends are marked by
the special value -1.

RATFOR — A Preprocessor for a Rational Fortran

equal _ compare strl to str2;

return 1if equal, Oif not
integer function equal (strl, str2)
integer str1(100), str2(100)

integer i
for (i = 1; strl(i) == str2(i); i =i + 1)
if (stri(i) ==-1){
equa =1
return
}
equal =0
return

end

In many languages (e.g., PL/l) one instead
says

return (expression)
to return a value from a function. Since this is
often clearer, Ratfor provides such areturn state-
ment — in a function F, return(expression) is
equivalent to

{ F = expression; return }
For example, here is equal again:

equal _ compare strl to str2;

return 1if equal, O if not
integer function equal (strl, str2)
integer str1(100), str2(100)

integer i
for (i = 1; strl(i) == str2(i); i=i + 1)
if (stri(i) ==-1)
return(1)
return(0)

end

If there is no parenthesized expression after
return, anormal RETURN ismade. (Another ver-
sion of equal is presented shortly.)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
isto read and understand programs. Accordingly,
Ratfor provides a number of cosmetic facilities
which may be used to make programs more read-
able.

RATFOR — A Preprocessor for a Rational Fortran

Free-form Input

Statements can be placed anywhere on a
ling; long statements are continued automatically,
as are long conditions in if, while, for, and until.
Blank lines are ignored. Multiple statements may
appear on one line, if they are separated by semi-
colons. No semicolon is needed at the end of a
line, if Ratfor can make some reasonable guess
about whether the statement ends there. Lines
ending with any of the characters

=+ -0, & (-

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")
is converted into

write(6, 100)
100 format(5hhello)

Trandation Services

Text enclosed in matching single or double
guotes is converted to nH... but is otherwise unal-
tered (except for formatting — it may get split
across card boundaries during the reformatting
process). Within quoted strings, the backslash ‘V
serves as an escape character: the next character
is taken literally. This provides a way to get
guotes (and of course the backdash itself) into
quoted strings:

"

is a string containing a backdash and an apos-
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
genera.)

Any line that begins with the character ‘%’
isleft absolutely unaltered except for stripping off
the ‘% and moving the line one position to the
left. Thisisuseful for inserting control cards, and
other things that should not be transmogrified
(like an existing Fortran program). Use ‘%’ only
for ordinary statements, not for the condition
parts of if, while, etc., or the output may come out
in an unexpected place.

The following character trandlations are
made, except within single or double quotes or on
aline beginning witha'%’.

PS2:8-9
== .€q. 1= .ne.
> .gt. >= .ge.
< It <= le.
& .and. | .or.
! .not. - .not.

In addition, the following trandations are pro-
vided for input devices with restricted character

‘‘define’’ Statement

Any string of aphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with aletter.

define is typicaly used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLYS)
if (i >ROWS | j >COLS)...
Alternately, definitions may be written as
defing(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym-
bolic parameters for most constants, to help make
clear the function of what would otherwise be
mysterious numbers. As an example, here is the
routine equal again, this time with symbolic con-
stants.

PS2:8-10

define YES 1
define NO 0
define EOS -1
define ARB 100

equal _ compare strl to str2;

return YESIf equal, NO if not
integer function equal (strl, str2)
integer str1(ARB), str2(ARB)
integer i

for (i = 1; stri(i) == str2(i);
i=i+1)
if (strl(i) == EOS)
return(Y ES)
return(NO)
end

“‘include’’ Statement
The statement

includefile

inserts the file found on input stream file into the
Ratfor input in place of the include statement.
The standard usage is to place comMON blocks on
a file, and include that file whenever a copy is
needed:

subroutine X
include commonblocks

end

suroutine'y
include commonblocks

end

This ensures that all copies of the cOMMON
blocks are identical

Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such as
missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved — using if, else,
etc,, as variable names will typically wreak
havoc. Don't leave spaces in keywords. Don't
use the Arithmetic IF.

RATFOR — A Preprocessor for a Rational Fortran

The Fortran nH convention is not recog-
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[5]. The language is
specified by a context free grammar and the com-
piler constructed using the vAcc compiler-
compiler[6].

The Ratfor grammar is simple and straight-
forward, being essentially

prog : stat
| prog stat
sa i () stat
| if (...) stat else stat
| while(...) stat
| for (...;...;..) stat
| do... stat
| repeat stat
| repeat stat until (...)
| switch (...) { case...: prog ...
default: prog }
| return
| break
| next
| digits stat
| { prog}
| anything unrecognizable

The observation that Ratfor knows no Fortran fol-
lows directly from the rule that says a statement is
‘*anything unrecognizable’’. In fact most of For-
tran falls into this category, since any statement
that does not begin with one of the keywords is
by definition ‘‘ unrecognizable.”’

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied to
the output with appropriate character translation
and formatting. (Leading digits are treated as a
label.) Keywords cause only slightly more com-
plicated actions. For example, when if is recog-
nized, two consecutive labels L and L+1 are gen-
erated and the value of L is stacked. The condi-
tion is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the if is then
transated. When the end of the statement is
encountered (which may be some distance away
and include nested if’s, of course), the code

L continue

is generated, unless there is an else clause, in

RATFOR — A Preprocessor for a Rational Fortran

which case the codeis

goto L+1
L continue

In thislatter case, the code
L+1 continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there is
no trailing else,

if i>0)x=a
should be |eft alone, not converted into

if (.not. (i .gt. 0)) goto 100
Xx=a
100 continue

But what are optimizing compilers for, if not to
improve code? It is arare program indeed where
this kind of *‘inefficiency’’ will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by ‘%'.

The use of a compiler-compiler is definitely
the preferred method of software development.
The language is well-defined, with few syntactic
irregularities. Implementation is quite simple; the
original construction took under a week. The
language is sufficiently simple, however, that an
ad hoc recognizer can be readily constructed to
do the same job if no compiler-compiler is avail-
able.

The C version of Ratfor is used on UNIX
and on the Honeywell Gcos systems. C com-
pilers are not as widely available as Fortran, how-
ever, so there is also a Ratfor written in itself and
originally bootstrapped with the C version. The
Ratfor version was written so as to trandate into
the portable subset of Fortran described in [1], so
it is portable, having been run essentially without
change on at least twelve distinct machines. (The
main restrictions of the portable subset are: only
one character per machine word; subscriptsin the
form cOvxc; avoiding expressions in places like
DO loops, consistency in subroutine argument
usage, and in COMMON declarations. Ratfor itself
will not gratuitously generate non-standard For-
tran.)

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of C); this

pPS2:8-11

compiles into 2500 lines of Fortran. This expan-
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe-
cution time of the Ratfor version is dominated by
two routines that read and write cards. Clearly
these routines could be replaced by machine
coded local versions, unless this is done, the
efficiency of other parts of the translation process
islargely irrelevant.

4. EXPERIENCE

Good Things

“*It's so much better than Fortran’’ is the
most common response of users when asked how
well Ratfor meets their needs. Although cynics
might consider this to be vacuous, it does seem to
be true that decent control flow and cosmetics
converts Fortran from a bad language into quite a
reasonable one, assuming that Fortran data struc-
tures are adequate for the task at hand.

Although there are no quantitative results,
users fed that coding in Ratfor is at least twice as
fast as in Fortran. More important, debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the code
can beread. The looping statements which test at
the top instead of the bottom seem to eliminate or
at least reduce the occurrence of a wide class of
boundary errors. And of course it is easy to do
structured programming in Ratfor; this self-
discipline also contributes markedly to reliability.

One interesting and encouraging fact is that
programs written in Ratfor tend to be as readable
as programs written in more modern languages
like Pascal. Once one is freed from the shackles
of Fortran's clerical detail and rigid input format,
it is easy to write code that is readable, even
esthetically pleasing. For example, here is a Rat-
for implementation of the linear table search dis-
cussed by Knuth [7]:

A(m+1) =x
for(i=1,A@) !I=x;i=i+1)

if (i >m){
m=i
B(i)=1
}
else
B(i)=B(i)+1

A large corpus (5400 lines) of Ratfor, including a
subset of the Ratfor preprocessor itself, can be

pPS2:8-12

foundin [8].

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran, and in afew cases this may be difficult to
relate back to the offending Ratfor line, especially
if the implementation conceals the generated For-
tran. This problem could be dealt with by tagging
each generated line with some indication of the
source line that created it, but this is inherently
implementation-dependent, so no action has yet
been taken. Error message interpretation is actu-
ally not so arduous as might be thought. Since
Ratfor generates no variables, only a simple pat-
tern of IF's and GOTO'Ss, datarrelated errors like
missing DIMENSION statements are easy to find in
the Fortran. Furthermore, there has been a steady
improvement in Ratfor’s ability to catch trivial
syntactic errors like unbalanced parentheses and
quotes.

There are a number of implementation
weaknesses that are a nuisance, especialy to new
users. For example, keywords are reserved. This
rarely makes any difference, except for those
hardy souls who want to use an Arithmetic IF. A
few standard Fortran constructions are not
accepted by Ratfor, and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a
‘%’ is not really a complete solution, although it
serves as a stop-gap. The best long-term solution
is provided by the program Struct [9], which con-
verts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is ‘‘unreadable’’
because it is not tastefully formatted and contains
extraneous CONTINUE statements. To some extent
this can be ameliorated (Ratfor now has an option
to copy Ratfor comments into the generated For-
tran), but it has always seemed that effort is better
spent on the input language than on the output
esthetics.

One fina problem is partly attributable to
success — since Ratfor is relatively easy to
modify, there are now several diaects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

RATFOR — A Preprocessor for a Rational Fortran

5. CONCLUSIONS

Ratfor demonstrates that with modest effort
it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor is
clearly a useful way to extend or ameliorate the
facilities of a base language.

When designing a language, it is important
to concentrate on the essential requirement of
providing the user with the best language possible
for a given effort. One must avoid throwing in
“‘features’’ — things which the user may trivialy
construct within the existing framework.

One must also avoid getting sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a nestly formatted listing of
either itsinput or its output. The user is presum-
ably capable of the self-discipline required to
prepare neat input that reflects his thoughts. It is
much more important that the language provide
free-form input so he can format it neatly. No
one should read the output anyway except in the
most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that ‘*One thing
[the language designer] should not do is to
include untried ideas of hisown.”” Ratfor follows
this precept very closely — everything in it has
been stolen from someone else. Most of the con-
trol flow structures are taken directly from the
language C[4] developed by Dennis Ritchie; the
comment and continuation conventions are
adapted from Altran[10].

| am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to severa design
improvements and the eradication of bugs. He
also trandated the C parse-tables and YACC parser
into Fortran for the first Ratfor version of Ratfor.

References

[1] B. G. Ryder, ‘“The PFORT Verifier,”’
Software—Practice & Experience, October
1974.

[2] American Nationa Standard Fortran.
American National Standards Ingtitute,
New Y ork, 1966.

[3] For-word: Fortran
Newsletter, August 1975.

[4] B.W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Inc., 1978.

Devel opment

RATFOR — A Preprocessor for a Rational Fortran

(5]

6]

(7]

8]
[9]

[10]

D. M. Ritchie and K. L. Thompson, ‘‘The
UNIX Time-sharing System.”” CACM, July
1974,

S. C. Johnson, ““YACC — Yet Another
Compiler-Compiler.”” Bell Laboratories
Computing Science Technical Report #32,
1978.

D. E. Knuth, ‘‘Structured Programming
with goto Statements.’” Computing Sur-
veys, December 1974.

B. W. Kernighan and P. J. Plauger,
Software Tools, Addison-Wesley, 1976.

B. S. Baker, ‘‘Struct — A Program which
Structures Fortran’’, Bell Laboratories
internal memorandum, December 1975.

A. D. Hal, *“The Altran System for

Rational Function Manipulation — A Sur-
vey.”” CACM, August 1971.

pPS2:8-14 RATFOR — A Preprocessor for a Rational Fortran

Appendix: Usage on UNIX and GCOS.
Beware — local customsvary. Check with a native before going into the jungle.

UNIX

The program ratfor isthe basic trandator; it takes either alist of file names or the standard input and
writes Fortran on the standard output. Options include —6x, which uses x as a continuation character in
column 6 (UNIX uses & in column 1), and —C, which causes Ratfor comments to be copied into the gen-
erated Fortran.

The program rc provides an interface to the ratfor command which is much the same as cc. Thus
rc [optiong] files

compiles the files specified by files. Files with names ending in .r are Ratfor source; other files are assumed
to be for theloader. The flags —C and —6x described above are recognized, as are

—C compile only; don't load

—f save intermediate Fortran .f files

- Reatfor only; implies —c and —f

-2 usebig Fortran compiler (for large programs)

-U flag undeclared variables (not universally available)

Other flags are passed on to the loader.

GCOs

The program ./ratfor is the bare trandator, and is identical to the UNIX version, except that the con-
tinuation convention is & in column 6. Thus

Jratfor files >output

tranglates the Ratfor source on files and collects the generated Fortran on file ‘output’ for subsequent pro-
cessing.

Jrc provides much the same services as rc (within the limitations of GCos), regrettably with a some-
what different syntax. Options recognized by ./rc include

name Ratfor source or library, depending on type
h=/name make TSS Hfile (runnable version); run as /name
r=/name update and use random library

a= compile as ascii (default is bed)

C= copy comments into Fortran

f=name Fortran source file

g=name gmap source file

Other options are as specified for the ./cc command described in [4].

TSO, TSS, and other systems
Ratfor exists on various other systems; check with the author for specifics.

