Waterloo C Development System

6.3 MVS-specific C Definitions

The following sections describe aspects of Waterloo C that are specific to the OS,
MVS and MVS/XA implementation of the C language.

6.3.1 Basic Arithmetic Types : —

The following definitions are used for arithmetic types in Waterloo C.

Type Size Range
signed char 8 bits -128..127 : :
char 8 bits 0..255 ‘
unsigned char 8 bits 0..255
short int 16 bits -32,768..32,767
unsigned short int 16 bits 0..65,535
int 32 bits -2,147,483,648..2,147,483,647
unsigned int 32 bits 0..4,294,967,295
long int 32 bits -2,147,483,648..2,147,483,647 .
unsigned long int 32 bits 0..4,294,967,295
float 32 bits fraction 6 digits (base 16)
exponent -64..+63 (base 16) .
double 64 bits fraction 14 digits (base 16)
exponent -64..+63 (base 16)

The library header files <1imits.h> and <float .h> contain several constant
definitions that can be used in a program to determine the characteristics of the basic

C types.

98 The Waterloo C Compiler

Reference

6.3.2 Filename Format for the #include Directive

A source file that is included into another source file with the #include
preprocessor directive (usually called a header file) can be specified as follows:

#include "membername.ddname" - Ik {/{44, .
770 debntists PR3 []
ddname must be allocated to the partitioned data set (PDS) that contains
membername. An alternate form

#include <name.h>

is reserved for the inclusion of C library header files, such as <stdio.h>. Ineither
case, the compiler translates the file specifier to upper case.

6.3.3 ;Special Characters

Some of the characters that are used in the C language are not available on a number
of terminals, such as the IBM 3278 and 3279. As described in the previous section,
an ANSI C trigraph sequence can be used in place of any of the characters for which
a sequence is defined. Alternatively, the following operator character substitutions
are offered.

. The C exclusive-or operator, usually the ASCII circumflex ‘A’, can be
replaced by either the EBCDIC turnstile '—' or the EBCDIC cent-sign '¢’.

. Array subscripting is usually indicated by left and right square brackets '’
and ']'. For Waterloo C, the two-character sequences "(:" and ":)" can be used
instead.

. The C inclusive-or operator can be either the solid vertical bar '|' or the

broken vertical bar '/,

For the specific character code values, see the table of ASCII and EBCDIC codes in
the Waterloo C Run-time Library Reference.

MYVS-specific C Definitions 99

Waterloo C Development System

6.3.4 Programming Restrictions

The following restrictions apply to programs that are compiled with the Waterloo C
compiler:

100

A function that is defined as taking a variable number of arguments is
restricted to a maximum of 31 unspecified parameters.

Waterloo C generates object and assembler output that contains global
symbols that are the first eight characters of the corresponding C extern
symbol, translated to upper-case, with underscore characters ('_") replaced
with dollar sign characters ('$"). Therefore, extern symbols must be unique
within the first eight characters from all other extern symbols in a program.

The Waterloo C Compiler

Reference

6.4 Compiler Command Format and Options

The Waterloo C compiler can be used in a batch (JCL) environment, or interactively
with TSO, to compile C programs into object or assembler output.

6.4.1 Input/Output Data Definitions

The following data definitions (DD statements/TSC allocations) can be specified
when programs are compiled with the Waterloo C compiler:

‘" SYSIN

. OBJ1l

OBJ2

ASM1

ASM2

DBGINFO

SYSLIB

SYSPRINT

" SYSLIST

C source code to be compiled

code and read-only data object output; this DD is not required when
the PPC option is specified

read/write data object output; this DD is used only when the SPLIT
or RENT option is specified

code and read-only data assembler output; this DD is used only when
the ASM or ASMSRC option is specified

read/write data assembler output; this DD is used only when the AsM
or ASMSRC option, and the SPLIT or RENT option is specified

debugger symbolic information output; this DD is used only when the
DBG option is specified

default C source code include (header) library; alternate DD's of the
form TYPE may be provided if a file is included into the C source
code with the following:

#include *"name.type"

SYSLIB will be searched if the member NAME is not found in the
partitioned data set TYPE.

preprocessor output; this DD is used only when the PPC option is
specified

compiler diagnostic output

Compiler Command Format and Options 101

Waterloo C Development System

6.4.2 Compiling from JCL
The JCL procedure CW is provided with the system and may be installed in a system
procedure library. To use the compiler with this procedure definition, the following

job step can be used:

//CWSTEP EXEC CW,

// PARMS='optionl option2...",
// INCLIB='"include-library-dsn"',
!/ OUTC=sysout-parm,

!/ REG="nnnK"

All of the CW keyword parameters are optional and the following default values are
used when a parameter is not specified:

PARMS all compiler options assume their default values, as defined below

INCLIB SYSLIB is allocated to the standard include library
'WCOS.CLIB.H'

ouTC SYSLIST is defined as SYSOUT=A

REG the compiler is run with a region size of 1000K
Because the CW procedure contains DD statements to define SYSLIB and
SYSLIST, these DD names should not be defined in JCL that uses CW. A DD
statement for the source code input SYSIN must always be specified. Other DD

statements may be required, depending on the compiler options that are specified.

The following options can be specified for the C compiler from JCL. Each option is
described in detail following the list of options.

ALIGN enables address alignment of integer and float type values

ASCIIOUT converts all string and character constants to equivalent
ASCII values in the generated code

ASM writes assembler code to the DD ASM1; if the RENT or

SPLIT option is also specified, assembler code for
read/write data is written to the DD ASM2

102 The Waterloo C Compiler

Reference

ASMSRC

AUX name

COL column

CSECT name

DBG

OPT

NOOPT

(O]

OSENTRY

OSFUNC

PPC

PRM id token

same as ASM, except that the C source lines appear as
comments in the assembler output

uses the auxiliary storage allocation information file name
to define offsets for read/write data from a global base
register; name can be a DD name or a fully-qualified data
set name

input from the source file (and include files that are
delimited with a double quote (") on the #include
directive) is read, beginning in the specified column of each
line

sets the code section (CSECT) definition in the object
output to @name

generates symbolic information for use by the Waterloo C
Debugger and writes the output to the DD DBGINFO

enables compiler optimization (the default)
disables compiler optimization

generates code which uses an OS style register linkage
convention with a reserved run-time stack pointer register

generates code which uses an OS style register linkage
convention with no run-time stack

generates code which uses an OS style register linkage
convention where a special call is generated during the
function prologue to obtain a stack pointer value

writes preprocessor output (without compiling it} to the DD
SYSPRINT

simulates the addition of the preprocessor directive

#define id token

Compiler Command Format and Options 103

RENT

SPLIT

STACKCHK

NOTEXT

TRUNC column

WNG

NOWNG

NOZERO

Waterloo C Development System

at the top of the source file; both id and token must be
specified; to define more than one preprocessor identifier,
specify the option once for each definition

generates reentrant code using register based data
references; assembler and object code for executable code
and read-only data, and read/write data is written to the
DD's AsM1, ASM2, OBJ1 and OBJZ2, subject to the ASM,
ASMSRC and NOTEXT options

partitions executable code and read-only data, and
read/write data into separate assembler and object output
DD's ASM1, ASM2, OBJ1 and OBJ2, subject to the ASM,
ASMSRC and NOTEXT options; note that the RENT and
SPLIT options cannot be specified together

generates code which checks for a run-time stack overflow
condition at the start of every function

suppresses the generation of object output
characters after the specified column in the source fite (and
include files that are delimited with a double quote (") on

the #include directive) are ignored

generates warning messages for any questionable
statements

suppresses the display of all warning messages

disables the initialization of otherwise uninitialized static
variables to zero values

-

The number of errors that are diagnosed is returned as the completion code for the

step.

For example, consider the following sample JCL:

104

The Waterloo C Compiler

Reference

//HELLOCW JOB 'ACCCUNTING INFORMATICN'

/=

//CCMPILE EXEC CW,

/7 PARMS="'ASMSRC CSECT HELLO DBG PRM FIVE 5 PRM Six 6
//SYSIN oD DSN=WCOS .EXAMPLE.C (HELLO) , DISP=SHR

//ASM1 oD SYSOUT=A, DCB={LRECL=80,BLKSIZE=80, RECFM=FB)
//DBGINFO DD DSN=WCOS .EXAMPLE .DBGINFO (HELLO) , DISP=SHR
//0BJ1 DD DSN=WCOS .EXAMPLE .OBJ (HELLO) , DISP=SHR

In this example, the source code in "WCOS.EXAMPLE.C (HELLO) ' is compiled
with the following options in effect:

ASMSRC
CSECT HELLO
DBG

PRM FIVE 5
PRM Six 6

The generated assembler code is written to SYSOUT class A, and the object code
and debugger symbolic information are written to permanent data sets.

6.4.3 Compiling from TSO

The TSO CLIST Cw is provided with the system and may be installed in a system
command library. When the compiler is used with this CLIST, one of the following
command formats can be used:

CW name (member) { optionl option2... }

CW 'src-dsname{ (member)}' OBJ{obj-dsname{ (member)}) +
{ optionl optionZ... }

In the first format, where name is not a fully qualified data set name, the CLIST
allocates the source code input DD SYSIN to "user.name.C (member) ', where
user is the usual TSO user prefix. The object code DD 0BJ1 is allocated to
tuser.name.CBJ (member) '. If the DBG option is specified, the debugger
symbolic information output DD DBGINFO is allocated to
'user.name.DBGINFO (member) '.

If the second command format is used, where 'src-dsname' oOr ‘src-

dsname (member) ' is a fully qualified data set name, an object output data set
must be specified with the OBJ option. Note that when no member name is

Compiler Command Format and Options 105

Waterloo C Development System

specified, ' src~dsname ' must be a sequential data set.

For both command formats, compiler messages are written to the terminal. In
addition, the ERRS option can be used to specify a data set or PDS member where
messages should be written. Also, the CLIST allocates the default include library
DD SYSLIB to the standard include library *WCOS.CLIB.H"'.

The following options can be specified for the C compiler from the CW command.
Each option is described in detail following the list of options.

ALIGN enables address alignment of integer and float type values

ASCIIOUT converts all string and character constants to equivalent
ASCII values in the generated code

ASM (dsname) writes assembler code to the data set dsname, which is
allocated to DD ASM1; if the RENT or SPLIT option is
also specified, assembler code for read/write data is written
to the DD ASM2

ASMSRC (dsname) same as ASM, except that the C source lines appear as
comments in the assembler output

AUX (dsname) uses the auxiliary storage allocation information file
dsname to define offsets for read/write data from a global
base register

COL (column) input from the source file (and include files that are

delimited with a double quote (") on the #include
directive) is read, beginning in the specified column of each
line

CSECT (name) sets the code section (CSECT) definition in the object
output to @name

DBG generates symbolic information for use by the Waterloo C
Debugger and writes the output to the DD DBGINFO; if the
command line did not specify a fully qualified data set
name for the source code input, DBGINFO is allocated to
'user.name.DBGINFO (member) '

106 The Waterloo C Compiler

— Reference

ERRS (dsname) allocates the diagnostic output DD SYSLIST to dsname
OBJ (dsname) allocates the object output DD OBJ1 to dsname
OPT enables compiler optimization (the default)
_ NOOPT . disables compiler optimization
oS generates code which uses an OS style register linkage

convention with a reserved run-time stack pointer register

OSENTRY generates code which uses an OS style register linkage
convention with no run-time stack

OSFUNC generates code which uses an OS style register linkage
convention where a special call is generated during the
function prologue to obtain a stack pointer value

PPC (dsname) writes preprocessor output (without compiling it) to the
data set dsname

PRMS ('PRM idl tokenl PRM idZ2 tcken2...')
simulates the addition of the preprocessor directives

#define idl tokenl
#define id2 token2

at the top of the source file; PRM, id and token must be
specified for each preprocessor identifier that is to be
defined

RENT generates reentrant code wusing register based data
- references; assembler and object code for executable code
and read-only data, and read/write data is written to the
DD's asM1, ASM2, OBJ1 and OBJ2, subject to the ASM,
ASMSRC and NOTEXT options

SPLIT partitions executable code and read-only data, and
read/write data into separate assembler and object output

Compiler Command Format and Options 107

STACKCHK

NOTEXT

TRACE

TRUNC (column}

WNG

NOWNG

NOZERO

Waterloo C Development System

DD’s ASM1, ASM2, OBJ1 and OBJZ, subject to the ASM,
ASMSRC and NOTEXT options; note that the RENT and
SPLIT options cannot be specified together

generaies code which checks for a run-time stack overflow
condition at the start of every function

suppresses the generation of object output

traces the execution of the CLIST statements

characters after the specified column in the source file (and
include files that are delimited with a double quote (") on

the #include directive) are ignored

generates warning messages for any questionable
statements

suppresses the display of all waming messages

disables the initialization of otherwise uninitialized static
variables to zero values

The number of errors that are diagnosed is returned as the command return code.

For example, consider the following CW command, assuming that the TSO user

prefix is WCOS:

CW EXAMPLE (HELLO) ASMSRC (EXAMPLE.ASM(HELLO)) +
CSECT (HELLO) DBG PRMS('PRM FIVE 5 PRM Six 6")

With this command, the source code in 'WCOS.EXAMPLE.C (HELLO) ' is
compiled with the following options in effect:

ASMSRC

CSECT HELLO

DBG
PRM FIVE 5
PRM Six 6

The following are other examples of CW commands:

108

The Waterloo C Compiler

Reference

CW EXAMPLE (HELLO)
CW EXAMPLE (HELLC) DBG

CW EXAMPLE (HELLO) OBJ('''WCOS.EXAMPLE.OBJ (HELLO) ''")

6.4.4 The ALIGN Option

The ALIGN option ensures that objects (such as structure elements) of type short
int or short unsigned int are stored on a machine halfword (2-byte)
boundary, that objects of type int, float, unsigned int, long int and
unsigned long int are stored on a machine fullword (4-byte) boundary and
that objects of type double are stored on a machine doubleword (8-byte) boundary.

If the ALIGN option is not specified, only function parameters are aligned. As part
of the run-time conventions, the run-time stack pointer is maintained to a machine
doubleword alignment. On some System/370 architecture processors, object
alignment can significantly improve the performance of a program.

6.4.5 The ASCITIOUT Option

The ASCIIOUT option converts all string and character constants in the generated
object code from the EBCDIC character set to an equivaient ASCII character, if such
a character exists. Explicitly defined character constants in the program, such as
“xff', and characters for which no ASCII equivalent exists, are left unchanged.

Although MVS is fundamentally an EBCDIC system, C programs can process
ASCII data. See the descriptions of the atoce and etoa functions and the table of
ASCII and EBCDIC character codes in the Waterloo C Run-time Library Reference
for more information.

6.4.6 The ASM and ASMSRC Options

The ASM option causes the compiler to create output that contains System/370
assembler code. Output is written to the DD ASM1 and, if one of the RENT or
SPLIT options is also specified, assembler code for read/write data definitions is
written to the DD aSM2. The ASMSRC option performs the same function, with the

Compiler Command Format and Options 109

Waterloo C Development System

additional feature that the output that is created contains the C source lines as
comments. For both ASM and ASMSRC, the compiler creates the output with a fixed
record format and a logical record length of 80 so that it can be assembled using the
standard System/370 assembler. There are no assembler macros in the generated
output. If the ALIGN option (see above) is not specified with the ASM option, it may
be necessary to specify the NOALIGN option when the assembler is run.

6.4.7 The AUX Option
This option provides the compiler with the name of an auxiliary storage allocation
information file for use in the definition of register-based global read/write data.
For example,

CW EXAMPLE (TEST) AUX(EXAMPLE.AUX(MYFILE))
uses the storage allocation definitions in 'user.EXAMPLE .AUX (MYFILE) '.
The section Register-based Global Data Using AUX Data Sets contains information
about the use of this facility.
6.4.8 The COL and TRUNC Options
The COL and TRUNC options can be used to restrict the compiler to processing C
source lines within specified columns. It is particularly useful if the source file
contains sequence numbers.
6.4.9 The DBG Option
The DBG option is specified when the file that is being compiled is to be used with
the Waterloo C Debugger. Output containing symbolic information for use by the
debugger is created by the compiler and written to the DD DBGINFO.
6.4.10 The OPT and NOOPT Options
The Waterloo C compiler normally applies several code-improvement techniques 1o

increase the efficiency of the generated code. If NOOPT is specified, the
optimization phase of the compiler is disabled. For some C files, this may reduce the

110 The Waterloo C Compiler

Reference

time required to compile the file; however, the generated code will usually be less
efficient.

6.4.11 The OS, OSENTRY and OSFUNC Options

When any of these options is specified, the generated code will use an OS style
linkage convention instead of the normal Waterloo C function linkage. The
following is a summary of the three varieties of OS linkage that are available to C
programmers.

0Ss’ generates code that assumes that register 12 (R12) is reserved for
use as a run-time stack register and that the function base address is
contained in R15 when the function is called

OSENTRY generates code that requires no run-time stack register and that
makes no assumption about the function base address; each function
defines a static save area

OSFUNC generates code that contains a call to a routine ($GETSPTR) to
retrieve a run-time stack pointer value; the function base address is
assumed to be contained in R15

The OS-style Register Conventions section of this manual contains more information
about the use of each of these options.

6.4.12 The PPC Option

The PPC option causes the compiler to perform only the preprocessing phase of
compilation. Preprocessor output is written to the DD SYSPRINT. This output can
in turn be compiled by specifying it as input to a subsequent compile step.

6.4.13 The PRM Option

The PRM option allows the user to specify preprocessor macro definitions when the
program is compiled. For each occurrence of the PRM option in the compiler option

string, a preprocessor token definition is performed. For example,

CW EXAMPLE (TEST) PRMS({'PRM FIVE 5 PRM Six 6'")

Compiler Command Format and Options 111

Waterloo C Development System

is equivalent to inserting the following macro definitions before the first line of the
source file EXAMPLE .C (TEST):

#define FIVE 5
#define Six 6

6.4.14 The SPLIT and RENT Options

The SPLIT option partitions modifiable C variables, for which a fixed storage
location is allocated by the compiler, into a separate code section (CSECT) and
output DD from the read-only data and executable code. Object and assembler code
for the read-only portion is written to the usual output DD's 0BJ1 and ASM1 and
code for read/write data definitions is written to the output DD's OBJ2 and ASM2,
subject to whether the ASM, ASMSRC or NOTEXT options are specified.

The RENT option partitions modifiable data and constant code and data as with the
SPLIT option, but generates special, register-based references for the modifiable,
relocatable data. This option is useful in a program that is to be run in the MVS link
pack area (LPA).

Only one of the RENT or SPLIT options should be specified on the CW command
line. See the Separation of Global Data and Register-based Global Data sections of
this manual for more information about the use of these options.

6.4.15 The STACKCHK Option

The STACKCHK option causes code to be generated at the start of every function to
verify that sufficient space on the run-time stack is available for the function to run
correctly. A function call that is equivalent to

gsignal{ _STACK OVER);

is executed if insufficient stack space is available. See the Run-time Stack Overflow
Checking section of this manual for more information about the use of this option.

112 The Waterloo C Compiler

Reference

6.4.16 The NOTEXT Option

By default, the Waterloo C compiler writes object output to the DD 0BJ1. The
NQTEXT option suppresses the generation of this output.

6.4.17 The WNG and NOWNG Options

The Waterloo C compiler generates two classes of warning messages, called
conditional warnings and unconditional warnings, neither of which causes the
termination of compilation. When neither NOWNG nor WNG is specified on the
command line, unconditional warnings are written to the DD's STDOUT and
SYSLIST; conditional warnings are suppressed. The NOWNG option suppresses the
printing of both conditional and unconditional warnings. The WNG option causes
both conditional and unconditional warnings to be written.

6.4.18 The NOZERO Option

All modifiable C variables for which a fixed storage location is allocated by the
compiler (subject to the RENT option) are normally initialized to some value: either
to 0 by default, or to the values explicitly specified in a C initializer. The default
initialization to O is suppressed when the NOZERQ option is specified.

For a C source file with large array definitions that are initialized at run-time, the
size of the generated object code can be substantially reduced by the use of this
option. If the ASM or ASMSRC option is specified, the normal DC (define constant)
assembler directive in the generated assembler output is replaced with a DS (define
storage) directive.

Compiler Command Format and Options 113

